Author:
Liu Pengfu,Xie Saixue,Guo Qian,Chen Yan,Fan Junying,Kumar Nadda Ashok,Huang Xiaoluo,Chu Xiaohe
Abstract
Abstract
Background
β-Alanine is a precursor of many important pharmaceutical products and food additives, its market demand is continuously increasing nowadays. Whole-cell catalysis relying on the recombinant expression of key β-alanine synthesizing enzymes is an important method to produce β-alanine. Nevertheless, β-alanine synthesizing enzymes found so far have problems including easy inactivation, low expression or poor catalytic activity, and it remains necessary to develop new enzymes.
Results
Herein, we characterized an l-aspartate-α-decarboxylase, MpADC, from an aphid, Myzus persicae. It showed excellent catalytic activity at pH 6.0–7.5 and 37 °C. With the help of chaperone co-expression and N-terminal engineering guided by AlphaFold2 structure prediction, the expression and catalytic ability of MpADC in Escherichia coli were significantly improved. Using 50 g/L of E. coli cells expressing the MpADC-∆39 variant cultured in a 15-L fermenter, 232.36 g/L of β-alanine was synthesized in 13.5 h, with the average β-alanine yield of 17.22 g/L/h, which is best known so far.
Conclusions
Our research should facilitate the production of β-alanine in an environment-friendly manner.
Funder
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology