Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters

Author:

Krajang Morakot,Malairuang Kwanruthai,Sukna Jatuporn,Rattanapradit Krongchan,Chamsart SaethawatORCID

Abstract

Abstract Background A single-step ethanol production is the combination of raw cassava starch hydrolysis and fermentation. For the development of raw starch consolidated bioprocessing technologies, this research was to investigate the optimum conditions and technical procedures for the production of ethanol from raw cassava starch in a single step. It successfully resulted in high yields and productivities of all the experiments from the laboratory, the pilot, through the industrial scales. Yields of ethanol concentration are comparable with those in the commercial industries that use molasses and hydrolyzed starch as the raw materials. Results Before single-step ethanol production, studies of raw cassava starch hydrolysis by a granular starch hydrolyzing enzyme, StargenTM002, were carefully conducted. It successfully converted 80.19% (w/v) of raw cassava starch to glucose at a concentration of 176.41 g/L with a productivity at 2.45 g/L/h when it was pretreated at 60 °C for 1 h with 0.10% (v/w dry starch basis) of Distillase ASP before hydrolysis. The single-step ethanol production at 34 °C in a 5-L fermenter showed that Saccharomyces cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, pmax at 81.86 g/L (10.37% v/v) with a yield coefficient, Yp/s of 0.43 g/g, a productivity or production rate, rp at 1.14 g/L/h and an efficiency, Ef of 75.29%. Scale-up experiments of the single-step ethanol production using this method, from the 5-L fermenter to the 200-L fermenter and further to the 3000-L industrial fermenter were successfully achieved with essentially good results. The values of pmax,Yp/s, rp, and Ef of the 200-L scale were at 80.85 g/L (10.25% v/v), 0.42 g/g, 1.12 g/L/h and 74.40%, respectively, and those of the 3000-L scale were at 70.74 g/L (8.97% v/v), 0.38 g/g, 0.98 g/L/h and 67.56%, respectively. Because of using raw starch, major by-products, i.e., glycerol, lactic acid, and acetic acid of all three scales were very low, in ranges of 0.940–1.140, 0.046–0.052, 0.000–0.059 (% w/v), respectively, where are less than those values in the industries. Conclusion The single-step ethanol production using the combination of raw cassava starch hydrolysis and fermentation of three fermentation scales in this study is practicable and feasible for the scale-up of industrial production of ethanol from raw starch.

Funder

Office of the Higher Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3