Abstract
Abstract
Background
Myceliophthora thermophila is a thermophilic ascomycete fungus that is used as a producer of enzyme cocktails used in plant biomass saccharification. Further development of this species as an industrial enzyme factory requires a detailed understanding of its regulatory systems driving the production of plant biomass-degrading enzymes. In this study, we analyzed the function of MtXlr1, an ortholog of the (hemi-)cellulolytic regulator XlnR first identified in another industrially relevant fungus, Aspergillus niger.
Results
The Mtxlr1 gene was deleted and the resulting strain was compared to the wild type using growth profiling and transcriptomics. The deletion strain was unable to grow on xylan and d-xylose, but showed only a small growth reduction on l-arabinose, and grew similar to the wild type on Avicel and cellulose. These results were supported by the transcriptome analyses which revealed reduction of genes encoding xylan-degrading enzymes, enzymes of the pentose catabolic pathway and putative pentose transporters. In contrast, no or minimal effects were observed for the expression of cellulolytic genes.
Conclusions
Myceliophthora thermophila MtXlr1 controls the expression of xylanolytic genes and genes involved in pentose transport and catabolism, but has no significant effects on the production of cellulases. It therefore resembles more the role of its ortholog in Neurospora crassa, rather than the broader role described for this regulator in A. niger and Trichoderma reesei. By revealing the range of genes controlled by MtXlr1, our results provide the basic knowledge for targeted strain improvement by overproducing or constitutively activating this regulator, to further improve the biotechnological value of M. thermophila.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
National Council of Science and Technology of Mexico
Be-Basic
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference65 articles.
1. Ghatak H. Biorefineries from the perspective of sustainability: feedstocks, products, and processes. Renew Sust Energy Rev. 2011;15(8):4042–52.
2. van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, et al. The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci. 2013;4(107):1–18.
3. Sarkar N, Ghosh S, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renew Energy. 2012;37(1):19–27.
4. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7.
5. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83(1):1–11.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献