Four ways of implementing robustness quantification in strain characterisation

Author:

Torello Pianale Luca,Caputo Fabio,Olsson Lisbeth

Abstract

Abstract Background In industrial bioprocesses, microorganisms are generally selected based on performance, whereas robustness, i.e., the ability of a system to maintain a stable performance, has been overlooked due to the challenges in its quantification and implementation into routine experimental procedures. This work presents four ways of implementing robustness quantification during strain characterisation. One Saccharomyces cerevisiae laboratory strain (CEN.PK113-7D) and two industrial strains (Ethanol Red and PE2) grown in seven different lignocellulosic hydrolysates were assessed for growth-related functions (specific growth rate, product yields, etc.) and eight intracellular parameters (using fluorescent biosensors). Results Using flasks and high-throughput experimental setups, robustness was quantified in relation to: (i) stability of growth functions in response to the seven hydrolysates; (ii) stability of growth functions across different strains to establish the impact of perturbations on yeast metabolism; (iii) stability of intracellular parameters over time; (iv) stability of intracellular parameters within a cell population to indirectly quantify population heterogeneity. Ethanol Red was the best-performing strain under all tested conditions, achieving the highest growth function robustness. PE2 displayed the highest population heterogeneity. Moreover, the intracellular environment varied in response to non-woody or woody lignocellulosic hydrolysates, manifesting increased oxidative stress and unfolded protein response, respectively. Conclusions Robustness quantification is a powerful tool for strain characterisation as it offers novel information on physiological and biochemical parameters. Owing to the flexibility of the robustness quantification method, its implementation was successfully validated at single-cell as well as high-throughput levels, showcasing its versatility and potential for several applications. Graphical Abstract

Funder

Novo Nordisk Fonden

Swedish Energy Agency

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3