Engineering proton-coupled hexose uptake in Saccharomyces cerevisiae for improved ethanol yield

Author:

de Valk Sophie C.,Bouwmeester Susan E.,de Hulster Erik,Mans Robert

Abstract

Abstract Background In the yeast Saccharomyces cerevisiae, which is widely applied for industrial bioethanol production, uptake of hexoses is mediated by transporters with a facilitated diffusion mechanism. In anaerobic cultures, a higher ethanol yield can be achieved when transport of hexoses is proton-coupled, because of the lower net ATP yield of sugar dissimilation. In this study, the facilitated diffusion transport system for hexose sugars of S. cerevisiae was replaced by hexose–proton symport. Results Introduction of heterologous glucose– or fructose–proton symporters in an hxt0 yeast background strain (derived from CEN.PK2-1C) restored growth on the corresponding sugar under aerobic conditions. After applying an evolutionary engineering strategy to enable anaerobic growth, the hexose–proton symporter-expressing strains were grown in anaerobic, hexose-limited chemostats on synthetic defined medium, which showed that the biomass yield of the resulting strains was decreased by 44.0-47.6%, whereas the ethanol yield had increased by up to 17.2% (from 1.51 to 1.77 mol mol hexose−1) compared to an isogenic strain expressing the hexose uniporter HXT5. To apply this strategy to increase the ethanol yield on sucrose, we constructed a platform strain in which all genes encoding hexose transporters, disaccharide transporters and disaccharide hydrolases were deleted, after which a combination of a glucose–proton symporter, fructose–proton symporter and extracellular invertase (SUC2) were introduced. After evolution, the resulting strain exhibited a 16.6% increased anaerobic ethanol yield (from 1.51 to 1.76 mol mol hexose equivalent−1) and 46.6% decreased biomass yield on sucrose. Conclusions This study provides a proof-of-concept for the replacement of the endogenous hexose transporters of S. cerevisiae by hexose-proton symport, and the concomitant decrease in ATP yield, to greatly improve the anaerobic yield of ethanol on sugar. Moreover, the sugar-negative platform strain constructed in this study acts as a valuable starting point for future studies on sugar transport or development of cell factories requiring specific sugar transport mechanisms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3