Multivariate modular metabolic engineering for enhanced l-methionine biosynthesis in Escherichia coli

Author:

Li Zhongcai,Liu Qian,Sun Jiahui,Sun Jianjian,Li Mingjie,Zhang Yun,Deng Aihua,Liu Shuwen,Wen Tingyi

Abstract

Abstract Background l-Methionine is the only bulk amino acid that has not been industrially produced by the fermentation method. Due to highly complex and strictly regulated biosynthesis, the development of microbial strains for high-level l-methionine production has remained challenging in recent years. Results By strengthening the l-methionine terminal synthetic module via site-directed mutation of l-homoserine O-succinyltransferase (MetA) and overexpression of metAfbr, metC, and yjeH, l-methionine production was increased to 1.93 g/L in shake flask fermentation. Deletion of the pykA and pykF genes further improved l-methionine production to 2.51 g/L in shake flask fermentation. Computer simulation and auxotrophic experiments verified that during the synthesis of l-methionine, equimolar amounts of l-isoleucine were accumulated via the elimination reaction of cystathionine γ-synthetase MetB due to the insufficient supply of l-cysteine. To increase the supply of l-cysteine, the l-cysteine synthetic module was strengthened by overexpression of cysEfbr, serAfbr, and cysDN, which further increased the production of l-methionine by 52.9% and significantly reduced the accumulation of the byproduct l-isoleucine by 29.1%. After optimizing the addition of ammonium thiosulfate, the final metabolically engineered strain MET17 produced 21.28 g/L l-methionine in 64 h with glucose as the carbon source in a 5 L fermenter, representing the highest l-methionine titer reported to date. Conclusions In this study, a high-efficiency strain for l-methionine production was derived from wild-type Escherichia coli W3110 by rational metabolic engineering strategies, providing an efficient platform for the industrial production of l-methionine.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Innovation Academy for Green Manufacture, Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3