Lipid accumulation mechanism of Amphora coffeaeformis under nitrogen deprivation and its application as a feed additive in Carassius auratus aquaculture

Author:

Cui Yulin,Wang Kang,Zhou Xiuzhi,Meng Chunxiao,Gao Zhengquan

Abstract

Abstract Background Amphora coffeaeformis, a unicellular diatom, can significantly accumulate lipids under nitrogen (N) limitation. However, the molecular mechanism underlying lipid accumulation in A. coffeaeformis remains unknown and its application development is lagging. Results This work analyzed the lipid composition of A. coffeaeformis under N deprivation and investigated its mechanism underlying lipid accumulation using RNA-seq. The results showed that the total lipid content of A. coffeaeformis increased from 28.22 to 44.05% after 5 days of N deprivation, while the neutral lipid triacylglycerol (TAG) content increased from 10.41 to 25.21%. The transcriptional profile showed that N deprivation induced wide-ranging reprogramming of regulation and that most physiological activities were repressed, while the upregulation of glycerol-3-phosphate acyltransferase directly determined TAG accumulation. Moreover, we explored the effect of A. coffeaeformis as a food additive on the lipid composition of crucian carp. The results showed that the contents of unsaturated fatty acids in the meat of fish supplemented with A. coffeaeformis were significantly increased, indicating its potential application in animal nutrition for improving meat quality indicators. Conclusion The findings shed light on the molecular mechanisms of neutral lipid accumulation and revealed the key genes involved in lipid metabolism in A. coffeaeformis. Moreover, we also confirmed that A. coffeaeformis can be used as feed additive for improving the lipid composition of crucian carp meat, which provided evidence for the biotechnology application of this high-oil microalgae.

Funder

National Natural Science Foundation of China

Major Basic Research Program for Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3