Abstract
Abstract
Background
The co-fermentation of syngas (mainly CO, H2 and CO2) and different concentrations of carbohydrate/protein synthetic wastewater to produce volatile fatty acids (VFAs) was conducted in the present study.
Results
It was found that co-fermentation of syngas with carbohydrate-rich synthetic wastewater could enhance the conversion efficiency of syngas and the most efficient conversion of syngas was obtained by co-fermentation of syngas with 5 g/L glucose, which resulted in 25% and 43% increased conversion efficiencies of CO and H2, compared to syngas alone. The protein-rich synthetic wastewater as co-substrate, however, had inhibition on syngas conversion due to the presence of high concentration of NH4+-N (> 900 mg/L) produced from protein degradation. qPCR analysis found higher concentration of acetogens, which could use CO and H2, was present in syngas and glucose co-fermentation system, compared to glucose solo-fermentation or syngas solo-fermentation. In addition, the known acetogen Clostridium formicoaceticum, which could utilize both carbohydrate and CO/H2 was enriched in syngas solo-fermentation and syngas with glucose co-fermentation. In addition, butyrate was detected in syngas and glucose co-fermentation system, compared to glucose solo-fermentation. The detected n-butyrate could be converted from acetate and lactate/ethanol which produced from glucose in syngas and glucose co-fermentation system supported by label-free quantitative proteomic analysis.
Conclusions
These results demonstrated that the co-fermentation with syngas and carbohydrate-rich wastewater could be a promising technology to increase the conversion of syngas to VFAs. In addition, the syngas and glucose co-fermentation system could change the degradation pathway of glucose in co-fermentation and produce fatty acids with longer carbon chain supported by microbial community and label-free quantitative proteomic analysis. The above results are innovative and lead to achieve effective conversion of syngas into VFAs/longer chain fatty acids, which would for sure have a great interest for the scientific and engineering community. Furthermore, the present study also used the combination of high-throughput sequencing of 16S rRNA genes, qPCR analysis and label-free quantitative proteomic analysis to provide deep insights of the co-fermentation process from the taxonomic and proteomic aspects, which should be applied for future studies relating with anaerobic fermentation.
Funder
Natural Science Foundation of Beijing Municipality
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献