Comparative transcriptome and co-expression network analysis revealed the genes associated with senescence and polygalacturonase activity involved in pod shattering of rapeseed

Author:

Mahmood Umer,Li Xiaodong,Qian Mingchao,Fan Yonghai,Yu Mengna,Li Shengting,Shahzad Ali,Qu Cunmin,Li Jiana,Liu Liezhao,Lu KunORCID

Abstract

Abstract Background The pod shattering (PS) trait negatively affects the crop yield in rapeseed especially under dry conditions. To better understand the trait and cultivate higher resistance varieties, it’s necessary to identify key genes and unravel the PS mechanism thoroughly. Results In this study, we conducted a comparative transcriptome analysis between two materials significantly different in silique shatter resistance lignin deposition and polygalacturonase (PG) activity. Here, we identified 10,973 differentially expressed genes at six pod developmental stages. We found that the late pod development stages might be crucial in preparing the pods for upcoming shattering events. GO enrichment results from K-means clustering and weighed gene correlation network analysis (WGCNA) both revealed senescence-associated genes play an important role in PS. Two hub genes Bna.A05ABI5 and Bna.C03ERF/AP2-3 were selected from the MEyellow module, which possibly regulate the PS through senescence-related mechanisms. Further investigation found that senescence-associated transcription factor Bna.A05ABI5 upregulated the expression of SAG2 and ERF/AP2 to control the shattering process. In addition, the upregulation of Bna.C03ERF/AP2-3 is possibly involved in the transcription of downstream SHP1/2 and LEA proteins to trigger the shattering mechanism. We also analyzed the PS marker genes and found Bna.C07SHP1/2 and Bna.PG1/2 were significantly upregulated in susceptible accession. Furthermore, the role of auxin transport by Bna.WAG2 was also observed, which could reduce the PG activity to enhance the PS resistance through the cell wall loosening process. Conclusion Based on comparative transcriptome evaluation, this study delivers insights into the regulatory mechanism primarily underlying the variation of PS in rapeseed. Taken together, these results provide a better understanding to increase the yield of rapeseed by reducing the PS through better engineered crops.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Talent Project of Chongqing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3