Genome-Wide Analysis of the Polygalacturonase Gene Family Sheds Light on the Characteristics, Evolutionary History, and Putative Function of Akebia trifoliata

Author:

Yi Xiaoxiao1,Chen Wei1,Guan Ju1,Zhu Jun1,Zhang Qiuyi1,Yang Huai1,Yang Hao1,Zhong Shengfu1,Chen Chen1,Tan Feiquan1,Ren Tianheng1ORCID,Luo Peigao1ORCID

Affiliation:

1. Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata.

Funder

Science and Technology Department of Sichuan Province

Ya’an Science and Technology Bureau

Sichuan Provincial Administration of Traditional Chinese Medicine

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3