Cell envelope and stress-responsive pathways underlie an evolved oleaginous Rhodotorula toruloides strain multi-stress tolerance

Author:

Antunes Miguel,Mota Marta N.,Sá-Correia Isabel

Abstract

Abstract Background The red oleaginous yeast Rhodotorula toruloides is a promising cell factory to produce microbial oils and carotenoids from lignocellulosic hydrolysates (LCH). A multi-stress tolerant strain towards four major inhibitory compounds present in LCH and methanol, was derived in our laboratory from strain IST536 (PYCC 5615) through adaptive laboratory evolution (ALE) under methanol and high glycerol selective pressure. Results Comparative genomic analysis suggested the reduction of the original strain ploidy from triploid to diploid, the occurrence of 21,489 mutations, and 242 genes displaying copy number variants in the evolved strain. Transcriptomic analysis identified 634 genes with altered transcript levels (465 up, 178 down) in the multi-stress tolerant strain. Genes associated with cell surface biogenesis, integrity, and remodelling and involved in stress-responsive pathways exhibit the most substantial alterations at the genome and transcriptome levels. Guided by the suggested stress responses, the multi-stress tolerance phenotype was extended to osmotic, salt, ethanol, oxidative, genotoxic, and medium-chain fatty acid-induced stresses. Conclusions The comprehensive analysis of this evolved strain provided the opportunity to get mechanistic insights into the acquisition of multi-stress tolerance and a list of promising genes, pathways, and regulatory networks, as targets for synthetic biology approaches applied to promising cell factories, toward more robust and superior industrial strains. This study lays the foundations for understanding the mechanisms underlying tolerance to multiple stresses in R. toruloides, underscoring the potential of ALE for enhancing the robustness of industrial yeast strains.

Funder

Fundação para a Ciência e a Tecnologia

Institute for Bioengineering and Biosciences

i4HB - Institute for Health and Bioeconomy

Yeast4Bio COST Action

Move2LowC project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3