The expression and antigenicity of a truncated spike-nucleocapsid fusion protein of severe acute respiratory syndrome-associated coronavirus
-
Published:2008-11-28
Issue:1
Volume:8
Page:
-
ISSN:1471-2180
-
Container-title:BMC Microbiology
-
language:en
-
Short-container-title:BMC Microbiol
Author:
Mu Feng,Niu Dongsheng,Mu Jingsong,He Bo,Han Weiguo,Fan Baoxing,Huang Shengyong,Qiu Yan,You Bo,Chen Weijun
Abstract
Abstract
Background
In the absence of effective drugs, controlling SARS relies on the rapid identification of cases and appropriate management of the close contacts, or effective vaccines for SARS. Therefore, developing specific and sensitive laboratory tests for SARS as well as effective vaccines are necessary for national authorities.
Results
Genes encoding truncated nucleocapsid (N) and spike (S) proteins of SARSCoV were cloned into the expression vector pQE30 and fusionally expressed in Escherichia coli M15. The fusion protein was analyzed for reactivity with SARS patients' sera and with anti-sera against the two human coronaviruses HCoV 229E and HCoV OC43 by ELISA, IFA and immunoblot assays. Furthermore, to evaluate the antigen-specific humoral antibody and T-cell responses in mice, the fusion protein was injected into 6-week-old BALB/c mice and a neutralization test as well as a T-cell analysis was performed. To evaluate the antiviral efficacy of immunization, BALB/c mice were challenged intranasally with SARSCoV at day 33 post injection and viral loads were determined by fluorescent quantitative RT-PCR. Serological results showed that the diagnostic sensitivity and specificity of the truncated S-N fusion protein derived the SARS virus were > 99% (457/460) and 100.00% (650/650), respectively. Furthermore there was no cross-reactivity with other two human coronaviruses. High titers of antibodies to SRASCoV appeared in the immunized mice and the neutralization test showed that antibodies to the fusion protein could inhibit SARSCoV. The T cell proliferation showed that the fusion protein could induce an antigen-specific T-cell response. Fluorescent quantitative RT-PCR showed that BALB/c mice challenged intranasally with SARSCoV at day 33 post injection were completely protected from virus replication.
Conclusion
The truncated S-N fusion protein is a suitable immunodiagnostic antigen and vaccine candidate.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference33 articles.
1. WHO: Cumulative number of reported cases of severe acute respiratory syndrome (SARS). 2003, [http://www.who.int/csr/sars/country/2003_08_15/en/] 2. WHO: Severe acute respiratory syndrome (SARS). Wkly Epidemiol Rec. 2003, 78: 86- 3. Marra MA, Jones SJM, Astell CR, Holt RA, Wilson AB, Butterfield YSN, Khattra J, Jennifer KA, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS: The Genome sequence of the SARS-associated coronavirus. Science. 2003, 300: 1399-1404. 10.1126/science.1085953. 4. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, SARS study group: Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003, 361: 1319-1325. 10.1016/S0140-6736(03)13077-2. 5. Qin E, Zhu Q, Yu M, Fan B, Chang G, Si B, Yang B, Peng W, Jiang T, Liu B, Deng Y, Liu H, Zhang Y, Wang C, Li Y, Gan Y, Li X, Lü F, Tan G, Cao W, Yang R, Wang J, Li W, Xu Z, Li Y, Wu Q, Lin W, Han Y, Li G, Li W, et al.: A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01). Chin Sci Bulltin. 2003, 48: 941-948. 10.1360/03wc0186.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|