Author:
Rani Asha,Sharma Anil,Rajagopal Raman,Adak Tridibesh,Bhatnagar Raj K
Abstract
Abstract
Background
Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms.
Results
Lab-reared and field-collected A. stephensi male, female and larvae were screened by "culture-dependent and culture-independent" methods. Five 16S rRNA gene library were constructed form lab and field-caught A. stephensi mosquitoes and a total of 115 culturable isolates from both samples were analyzed further. Altogether, 68 genera were identified from midgut of adult and larval A. stephensi, 53 from field-caught and 15 from lab-reared mosquitoes. A total of 171 and 44 distinct phylotypes having 85 to 99% similarity with the closest database matches were detected among field and lab-reared A. stephensi midgut, respectively. These OTUs had a Shannon diversity index value of 1.74–2.14 for lab-reared and in the range of 2.75–3.49 for field-caught A. stephensi mosquitoes. The high species evenness values of 0.93 to 0.99 in field-collected adult and larvae midgut flora indicated the vastness of microbial diversity retrieved by these approaches. The dominant bacteria in field-caught adult male A. stephensi were uncultured Paenibacillaceae while in female and in larvae it was Serratia marcescens, on the other hand in lab-reared mosquitoes, Serratia marcescens and Cryseobacterium meninqosepticum bacteria were found to be abundant.
Conclusion
More than fifty percent of the phylotypes were related to uncultured class of bacteria. Interestingly, several of the bacteria identified are related to the known symbionts in other insects. Few of the isolates identified in our study are found to be novel species within the gammaproteobacteria which could not be phylogenetically placed within known classes. To the best of our knowledge, this is the first attempt to study the midgut microbiota of A. stephensi from lab-reared and field-collected adult and larvae using "culture-dependent and independent methods".
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference57 articles.
1. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN: Wolbachia and virus protection in insects. Science. 2008, 322: 702-10.1126/science.1162418.
2. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009, 323: 141-144. 10.1126/science.1165326.
3. Rodrigues J, Agrawal N, Sharma A, Malhotra P, Adak T, Chauhan VS, Bhatnagar RK: Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies. BMC Molecular Biol. 2007, 8: 33-10.1186/1471-2199-8-33.
4. Rodrigues J, Sharma A, Kajla M, Agrawal N, Adak T, Bhatnagar RK: Plasmodium infection upregulates prophenoloxidase (AcPPO6A) in Anopheles culicifacies. Innate Immunity. 2009, 1:
5. Carlson J: Genetic manipulation of mosquitoes: an approach to controlling disease. Trends Biotechnol. 1996, 1: 447-448. 10.1016/S0167-7799(96)10057-3.
Cited by
253 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献