Common and specific genomic sequences of avian and human extraintestinal pathogenic Escherichia coli as determined by genomic subtractive hybridization

Author:

Kariyawasam Subhashinie,Scaccianoce Jennifer A,Nolan Lisa K

Abstract

Abstract Background Suppression subtractive hybridization (SSH) strategy was used with extraintestinal pathogenic Escherichia coli (EXPEC) that cause avian colibacillosis (avian pathogenic E. coli or APEC) and human urinary tract infections (uropathogenic E. coli or UPEC) to determine if they possessed genes that were host and/or niche specific. Both APEC and UPEC isolates were used as tester and driver strains in 4 different SSHs in order to obtain APEC- and UPEC-specific subtraction fragments (SFs). Results These procedures yielded a total of 136 tester-specific SFs of which 85 were APEC-derived and 51 were UPEC-derived. Most of the APEC-derived SFs were associated with plasmids; whereas, the majority of UPEC-derived sequences matched to the bacterial chromosome. We further determined the distribution of these tester-derived sequences in a collection of UPEC and APEC isolates using polymerase chain reaction techniques. Plasmid-borne, APEC-derived sequences (tsh, cva B, tra R, tra C and sop B) were predominantly present in APEC, as compared to UPEC. Of the UPEC-derived SFs, those encoding hemolysin D and F1C major and minor fimbrial subunits were present only in UPEC. However, two UPEC-derived SFs that showed strong similarity to the uropathgenic-specific protein gene (usp) occurred in APEC, demonstrating that usp is not specific to UPEC. Conclusion This study provides evidence of the genetic variability of ExPEC as well as genomic similarities between UPEC and APEC; it did not identify any single marker that would dictate host and/or niche specificity in APEC or UPEC. However, further studies on the genes that encode putative or hypothetical proteins might offer important insight into the pathogenesis of disease, as caused by these two ExPEC.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3