Author:
Liew Siew Mun,Tay Sun Tee,Puthucheary Savithiri D
Abstract
Abstract
Background
Leucine aminopeptidase (LAP) has been known to be a housekeeping protease, DNA-binding protein and repressor or activator in the operon regulation of virulence-associated genes in several bacterial species. LAP activity was consistently detected in overnight cultures of Burkholderia pseudomallei, the causative agent of melioidosis and this enzyme was partially purified and characterised in this study. The intra- and inter-species nucleotide and deduced amino acid sequence variation of LAP encoding gene (pepA) was determined. A pepA/PCR-RFLP assay was designed to facilitate the identification of major LAP sequence types amongst clinical and environmental isolates of B. pseudomallei.
Results
LAP activity was detected in B. pseudomallei culture supernantants by zymographic analysis. Optimum activity was at pH 9 and stable at 50°C. Enhanced enzymatic activity was observed in the presence of metallic ions Mg2+, Ca2+, Na+ and K+. LAP activity was inhibited by EDTA, 1,10-phenanthroline, amastatin, Mn2+ and Zn2+. Sequence analysis of the complete nucleotide and deduced amino acid sequences of LAP-encoding (pepA) gene showed close genetic relatedness to B. mallei (similarity 99.7%/99.6%), but not with B. thailandensis (96.4%/96.4%). Eight pepA sequence types were identified by comparison with a 596 bp DNA fragment encompassing central regions of the pepA gene. A pepA/PCR-RFLP was designed to differentiate pepA sequence types. Based on restriction analysis with StuI and HincII enzymes of the amplified pepA gene, clinical and environmental isolates showed different predominant RFLP types. Type I was the most predominant type amongst 73.6% (67/91) of the clinical isolates, while Type II was predominant in 55.6% (5/9) of the environmental isolates.
Conclusions
This study showed that LAP is a secretory product of B. pseudomallei with features similar to LAP of other organisms. Identification of major LAP sequence types of B. pseudomallei was made possible based on RFLP analysis of the pepA gene. The high LAP activity detected in both B. pseudomallei and B. thailandensis, suggests that LAP is probably a housekeeping enzyme rather than a virulence determinant.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference26 articles.
1. Liew SM, Tay ST, Wongratanacheewin S, Puthucheary SD: Enzymatic profiling of clinical and environmental isolates of Burkholderia pseudomallei. Trop Biomed. 2012, 29 (1): 160-168.
2. Vellasamy KM, Vasu C, Puthucheary SD, Vadivelu J: Comparative analysis of extracellular enzymes and virulence exhibited by Burkholderia pseudomallei from different sources. Microb Pathog. 2009, 47 (3): 111-117. 10.1016/j.micpath.2009.06.003.
3. Miller CG: Protein degradation and proteolytic modification. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Edited by: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE. 1987, Washington, DC: American Society for Microbiology, 680-691.
4. Yen C, Green L, Miller CG: Degradation of intracellular protein in Salmonella typhimurium peptidase mutants. J Mol Biol. 1980, 143 (1): 21-33. 10.1016/0022-2836(80)90122-9.
5. Stirling CJ, Colloms SD, Collins JF, Szatmari G, Sherratt DJ: xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J. 1989, 8 (5): 1623-1627.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献