Exploring the application of Corynebacterium glutamicum single cell protein in the diet of flathead grey mullet (Mugil cephalus): effects on growth performance, digestive enzymes activity and gut microbiota

Author:

Bertini Andrea,Natale Silvia,Gisbert Enric,Andrée Karl B.,Concu Danilo,Dondi Francesco,De Cesare Alessandra,Indio Valentina,Gatta Pier Paolo,Bonaldo Alessio,Parma Luca

Abstract

The capacity of utilising a single cell protein (SCP) ingredient coming from Corynebacterium glutamicum was assessed on adult grey mullet (Mugil cephalus) reared in captive conditions. The experiment was carried out using triplicate groups of grey mullet of 68 g average initial body weight. Three diets, SCP0, SCP10 and SCP20 with increasing inclusion of SCP (0%, 10% and 20%) in substitution of soybean, poultry and fish meal were formulated to contain 30% protein, 10% fat and 18.5 Mj/kg feed of digestible energy. After 113 days, fish fed SCP diets presented significantly lower growth performance and a significant lower activity of the alkaline proteases and aminopeptidases compared to fish fed diet without SCP inclusion. Gut microbiota appeared modulated by SCP inclusion being dominated at the phylum level by Fusobacteria in fish fed SCP0 (51.1%), while in fish fed SCP10 (67.3%) and SCP20 (53.2%) Proteobacteria was dominant. Data evinces a deficiency in the protein utilisation as a cause of the poor growth performance in fish fed the SCP diets. A hypothesis has been proposed that an incomplete SCP cell-wall lysis accounts for this outcome because of the particular organisation of the digestive system of grey mullet (which lack of an acidic stomach digestion) and the failing in the development of a functional gizzard (no access to sand in captive conditions). Even though the outcomes of this research were quite unexpected, they will improve our knowledge on the digestive system of flathead grey mullet and provide some theoretical basis for an improved development of low FM and SBM aquafeed for the species.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3