Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae
-
Published:2009-02
Issue:S1
Volume:9
Page:
-
ISSN:1471-2180
-
Container-title:BMC Microbiology
-
language:en
-
Short-container-title:BMC Microbiol
Author:
Meng Shaowu,Brown Douglas E,Ebbole Daniel J,Torto-Alalibo Trudy,Oh Yeon Yee,Deng Jixin,Mitchell Thomas K,Dean Ralph A
Abstract
Abstract
Background
Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly.
Methods
A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked.
Results
In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site http://amigo.geneontology.org/cgi-bin/amigo/go.cgi. Additionally, the genome of M. oryzae is constantly being refined and updated as new information is incorporated. For the latest GO annotation of Version 6 genome, please visit our website http://scotland.fgl.ncsu.edu/smeng/GoAnnotationMagnaporthegrisea.html. The preliminary GO annotation of Version 6 genome is placed at a local MySql database that is publically queryable via a user-friendly interface Adhoc Query System.
Conclusion
Our analysis provides comprehensive and robust GO annotations of the M. oryzae genome assemblies that will be solid foundations for further functional interrogation of M. oryzae.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference28 articles.
1. Brüssow H: The quest for food. 2007, Springer, New York 2. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read ND, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW: The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005, 434: 980-986. 10.1038/nature03449. 3. Oh YY, Donofrio N, Pan H, Coughlan S, Brown DE, Meng S, Mitchell T, Dean RA: Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol. 2008, 9 (5): R85-10.1186/gb-2008-9-5-r85. 4. Gowda M, Venu RC, Raghupathy , Mohan B, Nobuta K, Li H, Wing R, Stahlberg E, Couglan S, Haudenschild , Christian D, Dean R, Nahm B-H, Meyers BC, Wang G-L: Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods. BMC Genomics. 2006, 7: 310-10.1186/1471-2164-7-310. 5. Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S, Choi J, Park JY, Yi M, Yang S, Kwon MJ, Han SS, Kim BR, Khang CH, Park B, Lim SE, Jung K, Kong S, Karunakaran M, Oh HS, Kim H, Kim S, Park J, Kang S, Choi WB, Kang S, Lee YH: Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet. 2007, 39 (4): 561-565. 10.1038/ng2002.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|