Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection

Author:

Blevins Jon S,Hagman Kayla E,Norgard Michael V

Abstract

Abstract Background Decorin-binding proteins (Dbps) A and B of Borrelia burgdorferi, the agent of Lyme disease, are surface-exposed lipoproteins that presumably bind to the extracellular matrix proteoglycan, decorin. B. burgdorferi infects various tissues including the bladder, heart, joints, skin and the central nervous system, and the ability of B. burgdorferi to bind decorin has been hypothesized to be important for this disseminatory pathogenic strategy. Results To determine the role of DbpBA in the infectious lifecycle of B. burgdorferi, we created a DbpBA-deficient mutant of B. burgdorferi strain 297 and compared the infectious phenotype of the mutant to the wild-type strain in the experimental murine model of Lyme borreliosis. The mutant strain exhibited a 4-log decrease in infectivity, relative to the wild-type strain, when needle inoculated into mice. Upon complementation of the DbpBA-mutant strain with DbpA, the wild-type level of infectivity was restored. In addition, we demonstrated that the DbpBA-deficient mutant was able to colonize Ixodes scapularis larval ticks after feeding on infected mice and persist within the ticks during the molt to the nymphal state. Moreover, surprisingly, the DbpBA-mutant strain was capable of being transmitted to naïve mice via tick bite, giving rise to infected mice. Conclusion These results suggest that DbpBA is not required for the natural tick-transmission process to mammals, despite inferences from needle-inoculation experiments implying a requirement for DbpBA during mammalian infection. The combined findings also send a cautionary note regarding how results from needle-inoculation experiments with mice should be interpreted.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3