Development and validation of systems for genetic manipulation of the Old World tick-borne relapsing fever spirochete, Borrelia duttonii

Author:

Jackson-Litteken Clay D.,Guo Wanfeng,Hogland Brandon A.,Ratliff C. Tyler,McFadden LeAnn,Fullerton Marissa S.,Voth Daniel E.,Rego Ryan O. M.,Blevins Jon S.ORCID

Abstract

Relapsing fever (RF), a vector-borne disease caused by Borrelia spp., is characterized by recurring febrile episodes due to repeated bouts of bacteremia. RF spirochetes can be geographically and phylogenetically divided into two distinct groups; Old World RF Borrelia (found in Africa, Asia, and Europe) and New World RF Borrelia (found in the Americas). While RF is a rarely reported disease in the Americas, RF is prevalent in endemic parts of Africa. Despite phylogenetic differences between Old World and New World RF Borrelia and higher incidence of disease associated with Old World RF spirochete infection, genetic manipulation has only been described in New World RF bacteria. Herein, we report the generation of genetic tools for use in the Old World RF spirochete, Borrelia duttonii. We describe methods for transformation and establish shuttle vector- and integration-based approaches for genetic complementation, creating green fluorescent protein (gfp)-expressing B. duttonii strains as a proof of principle. Allelic exchange mutagenesis was also used to inactivate a homolog of the Borrelia burgdorferi p66 gene, which encodes an important virulence factor, in B. duttonii and demonstrate that this mutant was attenuated in a murine model of RF. Finally, the B. duttonii p66 mutant was complemented using shuttle vector- and cis integration-based approaches. As expected, complemented p66 mutant strains were fully infectious, confirming that P66 is required for optimal mammalian infection. The genetic tools and techniques reported herein represent an important advancement in the study of RF Borrelia that allows for future characterization of virulence determinants and colonization factors important for the enzootic cycle of Old World RF spirochetes.

Funder

National Institute of Allergy and Infectious Diseases

National Institute of General Medical Sciences

Office of the Vice Chancellor for Research and Innovation

Arkansas Biosciences Institute

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3