Possible use of ail and foxA polymorphisms for detecting pathogenic Yersinia enterocolitica

Author:

Huang Ying,Wang Xin,Cui Zhigang,Yang Yuhuan,Xiao Yuchun,Tang Liuying,Kan Biao,Xu Jianguo,Jing Huaiqi

Abstract

Abstract Background Yersinia enterocolitica is an enteric pathogen that invades the intestinal mucosa and proliferates within the lymphoid follicles (Peyer's patches). The attachment invasion locus (ail) mediates invasion by Y. enterocolitica and confers an invasive phenotype upon non-invasive E. coli; ail is the primary virulence factor of Y. enterocolitica. The ferrioxamine receptor (foxA) located on the Y. enterocolitica chromosome, together with its transport protein, transports a siderophore specific for ferric ion. Currently, ail is the primary target gene for nucleic acid detection of pathogenic Y. enterocolitica. Results The genes ail and foxA in 271 pathogenic and 27 non-pathogenic Y. enterocolitica strains isolated from China and 10 reference strains were sequenced, aligned, compared to the ail and foxA sequences of Yersinia enterocolitica subsp. enterocolitica 8081 (Genbank: NC_008800), and analyzed for sequence polymorphism. The ail from the 282 strains showed 3 sequence patterns: 277 strains of serotypes O:3, O:9 and O:5, 27 with identical nucleic acid sequences formed pattern A1; 4 strains of serotype 1B/O:8 with identical nucleic acid sequences formed pattern A2; and one Chinese isolate 2/O:9 formed pattern A3. In the primary coding region of the foxA ORF (Genebank: X60447 nt 433-1866; nt 28 to 1,461 in the ORF), the sequences formed 3 groups and were further divided into 8 sequence patterns. Conclusion The ail and foxA loci of pathogenic Y. enterocolitica have been analyzed. The ail sequence was highly conserved among the same serotype strains from different sources; and foxA was highly conserved among the pathogenic strains, although there was some sequence diversity. Fewer strains were used from outside China, which is a limitation of the study.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3