Abstract
Abstract
A simple digital receiver named “GNU Radio Beacon Receiver (GRBR)” was developed for the satelliteground beacon experiment to measure the ionospheric total electron content (TEC). The open-source software toolkit for the software defined radio, GNU Radio, is utilized to realize the basic function of the receiver and perform fast signal processing. The software is written in Python for a LINUX PC. The open-source hardware called Universal Software Radio Peripheral (USRP), which best matches the GNU Radio, is used as a frontend to acquire the satellite beacon signals of 150 and 400 MHz. The first experiment was successful as results from GRBR showed very good agreement to those from the co-located analog beacon receiver. Detailed design information and software codes are open at the URL http://www.rish.kyoto-u.ac.jp/digitalbeacon/
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference14 articles.
1. Adams, A. T., R. K. Greenough, R. F. Wallenberg, A. Mendelovicz, and C. Lumjiak, The Quadrifilar Helical Antenna, IEEE Trans. Antennas Propagation, AP-22, 173–179, 1974.
2. Aitchison, G. J. and K. Weekes, Some deductions of ionospheric information from the observations of emissions from satellite 1957a2-I, J. Atmos. Terr. Phys., 14, 236–243, 1959.
3. Bernhardt, P. A. and C. L. Siefring, New satellite-based systems for ionospheric tomography and scintillation region imaging, Radio Sci., 41, RS5S23, doi:10.1029/2005RS003360, 2006.
4. Coker, C., G. S. Bust, R. A. Doe, and T. L. Gaussiran II, High-latitude plasma structure and scintillation, Radio Sci., 39, RS1S15, doi:10.1029/2002RS002833, 2004.
5. Davies, K., Recent progress in satellite radiobeacon studies with particular emphasis on the ATS-6 radio beacon experiment, Space Sci. Rev., 25, 357–430, 1980.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献