The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability

Author:

England Scott L.,Zhang Xiaoli,Immel Thomas J.,Forbes Jeffrey M.,DeMajistre Robert

Abstract

Abstract Recent observations of the low-latitude F-region ionosphere at times near equinox have shown that it varies with a predominant zonal wavenumber-four pattern in a fixed local-time frame. It has been shown that this pattern corresponds well to the non-migrating diurnal eastward wavenumber-three atmospheric tide (DE3) at E-region altitudes simulated by the Global Scale Wave Model (GSWM). Here we present details of the morphology of the F-region ionosphere from TIMED GUVI with simultaneous observations of the non-migrating diurnal tides at E-region altitudes from TIMED SABER. For the case of equinox (March 2002), the correspondence of the SABER and GUVI observations confirms the relationship previously established using the GSWM simulations. There is also a wavenumber-one signature that is present which may be related to the semi-diurnal westward wavenumber-three, possibly in conjunction with changes in the magnetic field with longitude. During July 2002, when the amplitude of the DE3 maximizes, the amplitude of the wavenumber-four pattern in the F-region ionosphere intensifies. There is also evidence of a strong wavenumber-three pattern in the F-region ionosphere, which can be attributed to the strong diurnal eastward wavenumber-two tide during this period. During January 2003, the amplitude of all non-migrating components observed by SABER are either small or asymmetric and the ionosphere does not display either a wavenumber-three or -four pattern. During both solstice periods, a strong wavenumber-one is seen that is attributed to the offset of the subsolar point and the geomagnetic equator that maximizes at solstice, possibly in conjunction with other geomagnetic effects. During all seasons, significant hemispheric asymmetries in the airglow wavenumber spectra are seen. The combined GUVI and SABER observations presented here demonstrate that the large-scale periodic longitudinal structure of the F-region ionosphere responds significantly to changes in the forcing by non-migrating diurnal tides at E-region altitudes.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3