Affiliation:
1. National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 3, 1113 Sofia, Bulgaria
Abstract
This paper presents climatological features of the longitudinal structures WN4, WN3, and WN2 and their drivers observed in the lower thermospheric temperatures and in the ionospheric TEC. For this purpose, two long-term data sets are utilized: the satellite SABER/TIMED temperature measurements, and the global TEC maps generated with the NASA JPL for the interval of 2002–2022. As the main drivers of the longitudinal structures are mainly nonmigrating tides, this study first investigates the climatology of those nonmigrating tides, which are the main contributors of the considered longitudinal structures; these are nonmigrating diurnal DE3, DE2, and DW2, and semidiurnal SW4 and SE2 tides. The climatology of WN4, WN3, and WN2 structures in the lower thermosphere reveals that WN4 is the strongest one with a magnitude of ~20 K observed at 10° S in August, followed by WN2 with ~13.9 K at 10° S in February, and the weakest is WN3 with ~12.4 K observed over the equator in July. In the ionosphere, WN3 is the strongest structure with a magnitude of 5.9 TECU located at −30° modip latitude in October, followed by WN2 with 5.4 TECU at 30 modip in March, and the last is WN4 with 3.7 TECU at −30 modip in August. Both the climatology of the WSA and the features of its drivers are investigated as well.
Funder
National Science Fund under Competition