Author:
Abdelfattah Amany,Samir Reham,Amin Heba M.
Abstract
Abstract
Background
Bacterial ghost cells (BGCs) are cells were drained of their genetic and cytoplasmic components. This work aimed to develop vaccine candidates against the Shigella flexneri (S. flexneri) 2b serotype using the BGCs approach. For the first time, (S. flexneri) 2b serotype BGCs vaccine was prepared by incubation with Triton X-100 (TX100) for only 12 h. Its safety and immunogenicity were compared to another vaccine produced using a previously used surfactant, namely Tween 80 (TW80). Scanning electron microscopy (SEM), cellular DNA, protein contents measurements, and ghost cell re-cultivation were used to confirm the successful generation of the BGCs. Immunogenicity was assessed through mice's intraperitoneal (IP) immunization followed by infection with S. flexneri ATCC 12022. Finally, histopathological examination was carried out.
Results
Viable colony forming units (CFUs) of S. flexneri were counted from stool samples as well as homogenized colon tissues of the non-immunized challenged group. Immunized mice sera showed a significant increase in serum bactericidal activity of both preparations (TX100 = 40% and TW80 = 56%) compared to the non-immunized challenged group (positive control). The IgG levels of the bacterial ghost-vaccinated groups were four and three times greater for the TX100 and TW80 ghost vaccines, respectively, compared to that of the positive control; both bacterial ghost vaccines (BGVs) were safe and effective, according to the results of the safety check tests and histopathological analysis.
Conclusions
When comparing the BGVs prepared using TX100 and TW80 methods, the use of TX100 as a new chemical treating agent for BGC production attained robust results in terms of shorter incubation time with the targeted cells and a strong immune response against S. flexneri 2b serotype ATCC 12022 in the IP challenge test. However, a clinical study is needed to confirm the efficacy and total safety of this novel vaccine.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献