Generation of empty cell envelopes of Streptococcus pyogenes using biosurfactants

Author:

Abdelfattah AmanyORCID,Amin Heba M.,Rabea Sameh,Samir Reham

Abstract

Abstract Background Bacterial ghost cells (BGCs) are cell envelopes that devoid of cytoplasmic and genetic contents in purpose of variable applications, including their great potential as vaccine candidates and their effectiveness as delivery systems for drugs and proteins. To our knowledge, this is the first study to produce Gram-positive BGCs by treating Streptococcus pyogenes (S. pyogenes) ATCC 19615 with Tween80 (TW80) or TritonX-100 (TX100), followed by preliminary testing of their antigenicity and safety in NIH/Ola-Hsd mice. The produced BGCs were confirmed by the presence of intact cells under a light microscope, the absence of growth signs upon re-cultivation. The transmembrane tunnels were visualized using a scanning electron microscope, and subsequently, considerable quantities of released DNA and protein were detected in the culture supernatant of the BGCs. The antigenicity of the produced BGCs was tested through three intra-nasal immunization doses followed by infection. Afterward, the opsonic activity and the IgG levels were measured, followed by a comprehensive histopathological examination for selected tissues and organs. Results The sera of immunized mice exhibited a significant rise in both opsonic activity (TW80 produced BGC = 68% and TX100 produced BGC = 75%) and IgG levels (TW80 produced BGC = a threefold increase and TX100 produced BGC = a fourfold increase) when compared to the positive control group "non-immunized challenged with ATCC 19615." Histopathological analysis revealed that the BGCs produced by TW80 are relatively safer and have a less severe impact than those produced by TX100. Conclusion The study's findings suggest that Sp-BGC/TW80 is initially effective and safe in vivo. However, further pre-clinical studies are necessary to confirm its effectiveness and ensure complete safety, specifically in terms of the absence of autoimmunity and antibody cross-reactivity with myosin proteins in human cardiac tissues.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3