In vitro gene silencing of independent phosphoglycerate mutase (iPGM) in the filarial parasite Brugia malayi

Author:

Singh Prashant Kumar,Kushwaha Susheela,Mohd Shahab,Pathak Manisha,Misra-Bhattacharya Shailja

Abstract

Abstract Background The phosphoglycerate mutase (PGM) enzyme catalyzes the interconversion of 2- and 3-phosphoglycerate in the glycolytic /gluconeogenic pathways that are present in the majority of cellular organisms. They can be classified as cofactor-dependent PGM (dPGM) or cofactor-independent PGM (iPGM). Vertebrates, yeasts, and many bacteria have only dPGM, while higher plants, nematodes, archaea, and many other bacteria have only iPGM. A small number of bacteria, including Escherichia coli and certain archaea and protozoa, contain both forms. The silencing of ipgm in Caenorhabditis elegans (C. elegans) has demonstrated the importance of this enzyme in parasite viability and, therefore, its potential as an anthelmintic drug target. In this study, the role of the Brugia malayi (B. malayi) ipgm in parasite viability, microfilaria release, embryogenesis, and in vivo development of infective larvae post-gene silencing was explored by applying ribonucleic acid (RNA) interference studies. Results The in vitro ipgm gene silencing by small interfering RNA (siRNA) leads to severe phenotypic deformities in the intrauterine developmental stages of female worms with a drastic reduction (~90%) in the motility of adult parasites and a significantly reduced (80%) release of microfilariae (mf) by female worms in vitro. Almost half of the in vitro- treated infective L3 displayed sluggish movement. The in vivo survival and development of siRNA-treated infective larvae (L3) was investigated in the peritoneal cavity of jirds where a ~45% reduction in adult worm establishment was observed. Conclusion The findings clearly suggest that iPGM is essential for both larval and adult stages of B. malayi parasite and that it plays a pivotal role in female worm embryogenesis. The results thus validate the Bm-iPGM as a putative anti-filarial drug target.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Reference57 articles.

1. WHO: Weekly epidemiological record. World Health Organisation. 2011, 35: 377-388.

2. WHO: Lymphatic filariasis: reasons for hope. 1997, Geneva: World Health Organization, 1-20.

3. WHO: Lymphatic filariasis elimination. Report of a meeting of the principles for the further enhancement of the public/private partnership. 1999, Amsterdam, The Netherlands, 1-14.

4. Ismail MM, Jayakody RL, Weil GJ, Nirmalan N, Jayasinghe KS, Abeyewickrema W, Rezvi-Sheriff MH, Rajaratnam HN, Amarasekera N, de Silva DC, Michalski ML, Dissanaike AS: Efficacy of single dose combinations of albendazole, ivermectin and diethylcarbamazine for the treatment of bancroftian filariasis. Trans R Soc Trop Med Hyg. 1998, 92: 94-97. 10.1016/S0035-9203(98)90972-5.

5. Sharma DC: New goals set for filariasis elimination in India. Lancet Infect Dis. 2002, 2: 389.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3