Recent developments in biofeedback for neuromotor rehabilitation

Author:

Huang He,Wolf Steven L,He Jiping

Abstract

Abstract The original use of biofeedback to train single muscle activity in static positions or movement unrelated to function did not correlate well to motor function improvements in patients with central nervous system injuries. The concept of task-oriented repetitive training suggests that biofeedback therapy should be delivered during functionally related dynamic movement to optimize motor function improvement. Current, advanced technologies facilitate the design of novel biofeedback systems that possess diverse parameters, advanced cue display, and sophisticated control systems for use in task-oriented biofeedback. In light of these advancements, this article: (1) reviews early biofeedback studies and their conclusions; (2) presents recent developments in biofeedback technologies and their applications to task-oriented biofeedback interventions; and (3) discusses considerations regarding the therapeutic system design and the clinical application of task-oriented biofeedback therapy. This review should provide a framework to further broaden the application of task-oriented biofeedback therapy in neuromotor rehabilitation.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Reference108 articles.

1. Basmajian JV: Biofeedback : principles and practice for clinicians. 1989, Baltimore, Williams & Wilkins, 3nd

2. Dursun E, Dursun N, Alican D: Effects of biofeedback treatment on gait in children with cerebral palsy. Disabil Rehabil. 2004, 26: 116-120. 10.1080/09638280310001629679.

3. Moreland J, Thomson MA: Efficacy of electromyographic biofeedback compared with conventional physical therapy for upper-extremity function in patients following stroke: a research overview and meta-analysis. Phys Ther. 1994, 74: 534-43; discussion 544-7.

4. Hilgard ER, Bower GH: Recent developments. Theories of learning. 1975, Englewood Cliffs, N.J.,, Prentice-Hall, 550-605. 4th

5. Wann JP, Turnbull JD: Motor skill learning in cerebral palsy: movement, action and computer-enhanced therapy. Baillieres Clin Neurol. 1993, 2: 15-28.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3