Author:
Huang He,Wolf Steven L,He Jiping
Abstract
Abstract
The original use of biofeedback to train single muscle activity in static positions or movement unrelated to function did not correlate well to motor function improvements in patients with central nervous system injuries. The concept of task-oriented repetitive training suggests that biofeedback therapy should be delivered during functionally related dynamic movement to optimize motor function improvement. Current, advanced technologies facilitate the design of novel biofeedback systems that possess diverse parameters, advanced cue display, and sophisticated control systems for use in task-oriented biofeedback. In light of these advancements, this article: (1) reviews early biofeedback studies and their conclusions; (2) presents recent developments in biofeedback technologies and their applications to task-oriented biofeedback interventions; and (3) discusses considerations regarding the therapeutic system design and the clinical application of task-oriented biofeedback therapy. This review should provide a framework to further broaden the application of task-oriented biofeedback therapy in neuromotor rehabilitation.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference108 articles.
1. Basmajian JV: Biofeedback : principles and practice for clinicians. 1989, Baltimore, Williams & Wilkins, 3nd
2. Dursun E, Dursun N, Alican D: Effects of biofeedback treatment on gait in children with cerebral palsy. Disabil Rehabil. 2004, 26: 116-120. 10.1080/09638280310001629679.
3. Moreland J, Thomson MA: Efficacy of electromyographic biofeedback compared with conventional physical therapy for upper-extremity function in patients following stroke: a research overview and meta-analysis. Phys Ther. 1994, 74: 534-43; discussion 544-7.
4. Hilgard ER, Bower GH: Recent developments. Theories of learning. 1975, Englewood Cliffs, N.J.,, Prentice-Hall, 550-605. 4th
5. Wann JP, Turnbull JD: Motor skill learning in cerebral palsy: movement, action and computer-enhanced therapy. Baillieres Clin Neurol. 1993, 2: 15-28.
Cited by
224 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献