Detection of statin-induced rhabdomyolysis and muscular related adverse events through data mining technique

Author:

Kunakorntham Patratorn,Pattanaprateep Oraluck,Dejthevaporn Charungthai,Thammasudjarit Ratchainant,Thakkinstian Ammarin

Abstract

Abstract Background and objective Rhabdomyolysis (RM) is a life-threatening adverse drug reaction in which statins are the one commonly related to RM. The study aimed to explore the association between statin used and RM or other muscular related adverse events. In addition, drug interaction with statins were also assessed. Methods All extracted prescriptions were grouped as lipophilic and hydrophilic statins. RM outcome was identified by electronically screening and later ascertaining by chart review. The study proposed 4 models, i.e., logistic regression (LR), Bayesian network (BN), random forests (RF), and extreme gradient boosting (XGBoost). Features were selected using multiple processes, i.e., bootstrapping, expert opinions, and univariate analysis. Results A total of 939 patients who used statins were identified consisting 15, 9, and 19 per 10,000 persons for overall outcome prevalence, using statin alone, and co-administrations, respectively. Common statins were simvastatin, atorvastatin, and rosuvastatin. The proposed models had high sensitivity, i.e., 0.85, 0.90, 0.95 and 0.95 for LR, BN, RF, and XGBoost, respectively. The area under the receiver operating characteristic was significantly higher in LR than BN, i.e., 0.80 (0.79, 0.81) and 0.73 (0.72, 0.74), but a little lower than the RF [0.817 (95% CI 0.811, 0.824)] and XGBoost [0.819 (95% CI 0.812, 0.825)]. The LR model indicated that a combination of high-dose lipophilic statin, clarithromycin, and antifungals was 16.22 (1.78, 148.23) times higher odds of RM than taking high-dose lipophilic statin alone. Conclusions The study suggested that statin uses may have drug interactions with others including clarithromycin and antifungal drugs in inducing RM. A prospective evaluation of the model should be further assessed with well planned data monitoring. Applying LR in hospital system might be useful in warning drug interaction during prescribing.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3