Primary care practices’ ability to predict future risk of expenditures and hospitalization using risk stratification and segmentation

Author:

Dorr David A.ORCID,Ross Rachel L.,Cohen Deborah,Kansagara Devan,Ramsey Katrina,Sachdeva Bhavaya,Weiner Jonathan P.

Abstract

Abstract Background Patients with complex health care needs may suffer adverse outcomes from fragmented and delayed care, reducing well-being and increasing health care costs. Health reform efforts, especially those in primary care, attempt to mitigate risk of adverse outcomes by better targeting resources to those most in need. However, predicting who is susceptible to adverse outcomes, such as unplanned hospitalizations, ED visits, or other potentially avoidable expenditures, can be difficult, and providing intensive levels of resources to all patients is neither wanted nor efficient. Our objective was to understand if primary care teams can predict patient risk better than standard risk scores. Methods Six primary care practices risk stratified their entire patient population over a 2-year period, and worked to mitigate risk for those at high risk through care management and coordination. Individual patient risk scores created by the practices were collected and compared to a common risk score (Hierarchical Condition Categories) in their ability to predict future expenditures, ED visits, and hospitalizations. Accuracy of predictions, sensitivity, positive predictive values (PPV), and c-statistics were calculated for each risk scoring type. Analyses were stratified by whether the practice used intuition alone, an algorithm alone, or adjudicated an algorithmic risk score. Results In all, 40,342 patients were risk stratified. Practice scores had 38.6% agreement with HCC scores on identification of high-risk patients. For the 3,381 patients with reliable outcomes data, accuracy was high (0.71–0.88) but sensitivity and PPV were low (0.16–0.40). Practice-created scores had 0.02–0.14 lower sensitivity, specificity and PPV compared to HCC in prediction of outcomes. Practices using adjudication had, on average, .16 higher sensitivity. Conclusions Practices using simple risk stratification techniques had slightly worse accuracy in predicting common outcomes than HCC, but adjudication improved prediction.

Funder

Commonwealth Fund

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference15 articles.

1. Mosley DG, Peterson E, Martin DC. Do hierarchical condition category model scores predict hospitalization risk in newly enrolled Medicare advantage participants as well as probability of repeated admission scores? J Am Geriatr Soc. 2009;57(12):2306–10.

2. Lemke KW, Weiner JP, Clark JM. Development and validation of a model for predicting inpatient hospitalization. Med Care. 2012;50(2):131–9.

3. Abrams M, Kleiman R, Schneider E, Shah T. The better care playbook [Internet]: the commonwealth fund. 2016. http://www.bettercareplaybook.org/resources/overview-segmentation-high-need-high-cost-patient-population.

4. Wagner JE, Hall J, Ross R, Cameron D, Sachdeva B, Cohen D, et al. Implementing risk stratification in primary care: challenges, considerations, and strategies. J Am Board Fam Med. 2019;32:585–95.

5. Haas LR, Takahashi PY, Shah ND, Stroebel RJ, Bernard ME, Finnie DM, et al. Risk-stratification methods for identifying patients for care coordination. Am J Manag Care. 2013;19(9):725–32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3