Abstract
Abstract
Background
Patients with complex health care needs may suffer adverse outcomes from fragmented and delayed care, reducing well-being and increasing health care costs. Health reform efforts, especially those in primary care, attempt to mitigate risk of adverse outcomes by better targeting resources to those most in need. However, predicting who is susceptible to adverse outcomes, such as unplanned hospitalizations, ED visits, or other potentially avoidable expenditures, can be difficult, and providing intensive levels of resources to all patients is neither wanted nor efficient. Our objective was to understand if primary care teams can predict patient risk better than standard risk scores.
Methods
Six primary care practices risk stratified their entire patient population over a 2-year period, and worked to mitigate risk for those at high risk through care management and coordination. Individual patient risk scores created by the practices were collected and compared to a common risk score (Hierarchical Condition Categories) in their ability to predict future expenditures, ED visits, and hospitalizations. Accuracy of predictions, sensitivity, positive predictive values (PPV), and c-statistics were calculated for each risk scoring type. Analyses were stratified by whether the practice used intuition alone, an algorithm alone, or adjudicated an algorithmic risk score.
Results
In all, 40,342 patients were risk stratified. Practice scores had 38.6% agreement with HCC scores on identification of high-risk patients. For the 3,381 patients with reliable outcomes data, accuracy was high (0.71–0.88) but sensitivity and PPV were low (0.16–0.40). Practice-created scores had 0.02–0.14 lower sensitivity, specificity and PPV compared to HCC in prediction of outcomes. Practices using adjudication had, on average, .16 higher sensitivity.
Conclusions
Practices using simple risk stratification techniques had slightly worse accuracy in predicting common outcomes than HCC, but adjudication improved prediction.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference15 articles.
1. Mosley DG, Peterson E, Martin DC. Do hierarchical condition category model scores predict hospitalization risk in newly enrolled Medicare advantage participants as well as probability of repeated admission scores? J Am Geriatr Soc. 2009;57(12):2306–10.
2. Lemke KW, Weiner JP, Clark JM. Development and validation of a model for predicting inpatient hospitalization. Med Care. 2012;50(2):131–9.
3. Abrams M, Kleiman R, Schneider E, Shah T. The better care playbook [Internet]: the commonwealth fund. 2016. http://www.bettercareplaybook.org/resources/overview-segmentation-high-need-high-cost-patient-population.
4. Wagner JE, Hall J, Ross R, Cameron D, Sachdeva B, Cohen D, et al. Implementing risk stratification in primary care: challenges, considerations, and strategies. J Am Board Fam Med. 2019;32:585–95.
5. Haas LR, Takahashi PY, Shah ND, Stroebel RJ, Bernard ME, Finnie DM, et al. Risk-stratification methods for identifying patients for care coordination. Am J Manag Care. 2013;19(9):725–32.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献