Prediction models using artificial intelligence and longitudinal data from electronic health records: a systematic methodological review

Author:

Carrasco-Ribelles Lucía A123ORCID,Llanes-Jurado José4,Gallego-Moll Carlos13,Cabrera-Bean Margarita2,Monteagudo-Zaragoza Mònica1,Violán Concepción3567,Zabaleta-del-Olmo Edurne189

Affiliation:

1. Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol) , Barcelona, 08007, Spain

2. Department of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC) , Barcelona, 08034, Spain

3. Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol) , Mataró, 08303, Spain

4. Instituto de Investigación e Innovación en Bioingeniería (i3B), Universitat Politècnica de València (UPV) , València, 46022, Spain

5. Direcció d’Atenció Primària Metropolitana Nord, Institut Català de Salut , Badalona, 08915, Spain

6. Fundació Institut d’Investigació en ciències de la salut Germans Trias i Pujol (IGTP) , Badalona, 08916, Spain

7. Fundació UAB, Universitat Autònoma de Barcelona , Cerdanyola del Vallès, 08193, Spain

8. Gerència Territorial de Barcelona, Institut Català de la Salut , Carrer de Balmes 22 , Barcelona, 08007, Spain

9. Nursing Department, Faculty of Nursing, Universitat de Girona , Girona, 17003, Spain

Abstract

Abstract Objective To describe and appraise the use of artificial intelligence (AI) techniques that can cope with longitudinal data from electronic health records (EHRs) to predict health-related outcomes. Methods This review included studies in any language that: EHR was at least one of the data sources, collected longitudinal data, used an AI technique capable of handling longitudinal data, and predicted any health-related outcomes. We searched MEDLINE, Scopus, Web of Science, and IEEE Xplorer from inception to January 3, 2022. Information on the dataset, prediction task, data preprocessing, feature selection, method, validation, performance, and implementation was extracted and summarized using descriptive statistics. Risk of bias and completeness of reporting were assessed using a short form of PROBAST and TRIPOD, respectively. Results Eighty-one studies were included. Follow-up time and number of registers per patient varied greatly, and most predicted disease development or next event based on diagnoses and drug treatments. Architectures generally were based on Recurrent Neural Networks-like layers, though in recent years combining different layers or transformers has become more popular. About half of the included studies performed hyperparameter tuning and used attention mechanisms. Most performed a single train-test partition and could not correctly assess the variability of the model’s performance. Reporting quality was poor, and a third of the studies were at high risk of bias. Conclusions AI models are increasingly using longitudinal data. However, the heterogeneity in reporting methodology and results, and the lack of public EHR datasets and code sharing, complicate the possibility of replication. Registration PROSPERO database (CRD42022331388).

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3