Medical code prediction via capsule networks and ICD knowledge

Author:

Bao Weidong,Lin Hongfei,Zhang YijiaORCID,Wang Jian,Zhang Shaowu

Abstract

Abstract Background Clinical notes record the health status, clinical manifestations and other detailed information of each patient. The International Classification of Diseases (ICD) codes are important labels for electronic health records. Automatic medical codes assignment to clinical notes through the deep learning model can not only improve work efficiency and accelerate the development of medical informatization but also facilitate the resolution of many issues related to medical insurance. Recently, neural network-based methods have been proposed for the automatic medical code assignment. However, in the medical field, clinical notes are usually long documents and contain many complex sentences, most of the current methods cannot effective in learning the representation of potential features from document text. Methods In this paper, we propose a hybrid capsule network model. Specifically, we use bi-directional LSTM (Bi-LSTM) with forwarding and backward directions to merge the information from both sides of the sequence. The label embedding framework embeds the text and labels together to leverage the label information. We then use a dynamic routing algorithm in the capsule network to extract valuable features for medical code prediction task. Results We applied our model to the task of automatic medical codes assignment to clinical notes and conducted a series of experiments based on MIMIC-III data. The experimental results show that our method achieves a micro F1-score of 67.5% on MIMIC-III dataset, which outperforms the other state-of-the-art methods. Conclusions The proposed model employed the dynamic routing algorithm and label embedding framework can effectively capture the important features across sentences. Both Capsule networks and domain knowledge are helpful for medical code prediction task.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference33 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3