A Unified Review of Deep Learning for Automated Medical Coding

Author:

Ji Shaoxiong1ORCID,Li Xiaobo2ORCID,Sun Wei3ORCID,Dong Hang4ORCID,Taalas Ara5ORCID,Zhang Yijia2ORCID,Wu Honghan6ORCID,Pitkänen Esa7ORCID,Marttinen Pekka8ORCID

Affiliation:

1. Aalto University, Aalto, Finland

2. Dalian Maritime University, Dalian, China

3. KU Leuven, Leuven Belgium

4. University of Exeter, Exeter United Kingdom of Great Britain and Northern Ireland

5. Terveystalo Healthcare Services, Helsinki, Finland

6. University of Glasgow, Glasgow United Kingdom of Great Britain and Northern Ireland

7. University of Helsinki, Helsinki, Finland

8. CS, Aalto University, Aalto Finland

Abstract

Automated medical coding, an essential task for healthcare operation and delivery, makes unstructured data manageable by predicting medical codes from clinical documents. Recent advances in deep learning and natural language processing have been widely applied to this task. However, deep learning-based medical coding lacks a unified view of the design of neural network architectures. This review proposes a unified framework to provide a general understanding of the building blocks of medical coding models and summarizes recent advanced models under the proposed framework. Our unified framework decomposes medical coding into four main components, i.e., encoder modules for text feature extraction, mechanisms for building deep encoder architectures, decoder modules for transforming hidden representations into medical codes, and the usage of auxiliary information. Finally, we introduce the benchmarks and real-world usage and discuss key research challenges and future directions.

Publisher

Association for Computing Machinery (ACM)

Reference214 articles.

1. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)

2. Problems and Barriers during the Process of Clinical Coding: a Focus Group Study of Coders’ Perceptions

3. Publicly Available Clinical

4. Aitziber Atutxa Arantza Casillas Nerea Ezeiza Víctor Fresno Iakes Goenaga Koldo Gojenola Raquel Martínez Maite Oronoz Anchordoqui and Olatz Perez-de Viñaspre. 2018. IxaMed at CLEF eHealth 2018 Task 1: ICD10 Coding with a Sequence-to-Sequence Approach.. In CLEF (Working Notes). 1.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NLP Based Prediction of Hospital Readmission using ClinicalBERT and Clinician Notes;International Journal of Innovative Science and Research Technology (IJISRT);2024-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3