An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records

Author:

Li Luqi,Zhao Jie,Hou Li,Zhai Yunkai,Shi Jinming,Cui Fangfang

Abstract

Abstract Background Clinical named entity recognition (CNER) is important for medical information mining and establishment of high-quality knowledge map. Due to the different text features from natural language and a large number of professional and uncommon clinical terms in Chinese electronic medical records (EMRs), there are still many difficulties in clinical named entity recognition of Chinese EMRs. It is of great importance to eliminate semantic interference and improve the ability of autonomous learning of internal features of the model under the small training corpus. Methods From the perspective of deep learning, we integrated the attention mechanism into neural network, and proposed an improved clinical named entity recognition method for Chinese electronic medical records called BiLSTM-Att-CRF, which could capture more useful information of the context and avoid the problem of missing information caused by long-distance factors. In addition, medical dictionaries and part-of-speech (POS) features were also introduced to improve the performance of the model. Results Based on China Conference on Knowledge Graph and Semantic Computing (CCKS) 2017 and 2018 Chinese EMRs corpus, our BiLSTM-Att-CRF model finally achieved better performance than other widely-used models without additional features(F1-measure of 85.4% in CCKS 2018, F1-measure of 90.29% in CCKS 2017), and achieved the best performance with POS and dictionary features (F1-measure of 86.11% in CCKS 2018, F1-measure of 90.48% in CCKS 2017). In particular, the BiLSTM-Att-CRF model had significant effect on the improvement of Recall. Conclusions Our work preliminarily confirmed the validity of attention mechanism in discovering key information and mining text features, which might provide useful ideas for future research in clinical named entity recognition of Chinese electronic medical records. In the future, we will explore the deeper application of attention mechanism in neural network.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3