Medical Named Entity Recognition Model Based on Knowledge Graph Enhancement

Author:

Lu Yonghe12ORCID,Zhao Ruijie1ORCID,Wen Xiuxian1ORCID,Tong Xinyu1ORCID,Xiang Dingcheng3,Zhang Jinxia3ORCID

Affiliation:

1. Department of Information Management, Sun Yat-Sen University, Guangzhou 510006, P. R. China

2. School of Artificial Intelligence, Sun Yat-Sen University, Guangzhou 510006, P. R. China

3. Department of Cardiology, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, P. R. China

Abstract

To improve the recognition ability of clinical named entity recognition (CNER) in a limited number of Chinese electronic medical records, it provides meaningful support for clinical advanced knowledge extraction. In this paper, using CCKS2019 Chinese electronic medical record as an experimental data source, a fusion model enhanced by knowledge graph (KG) is proposed, and the model is applied to specific Chinese CNER tasks. This study consists of three main parts: single-mode model construction and comparison experiment, KG enhancement experiment, and model fusion experiment. The model has achieved good performance in CNER from the results. The accuracy rate, recall rate, and F1 value are 83.825%, 84.705%, and 84.263%, respectively, which is the global optimal, which proves the effectiveness of the model. This provides a good help for further research of medical information.

Funder

Guangzhou Municipal Science and Technology Program key projects

Zhuhai Industry-University-Research Cooperation Project

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Erratum: Medical Named Entity Recognition Model Based on Knowledge Graph Enhancement;International Journal of Pattern Recognition and Artificial Intelligence;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3