Identification of hot regions in hub protein–protein interactions by clustering and PPRA optimization

Author:

Lin XiaoliORCID,Zhang Xiaolong

Abstract

Abstract Background Protein–protein interactions (PPIs) are the core of protein function, which provide an effective means to understand the function at cell level. Identification of PPIs is the crucial foundation of predicting drug-target interactions. Although traditional biological experiments of identifying PPIs are becoming available, these experiments remain to be extremely time-consuming and expensive. Therefore, various computational models have been introduced to identify PPIs. In protein-protein interaction network (PPIN), Hub protein, as a highly connected node, can coordinate PPIs and play biological functions. Detecting hot regions on Hub protein interaction interfaces is an issue worthy of discussing. Methods Two clustering methods, LCSD and RCNOIK are used to detect the hot regions on Hub protein interaction interfaces in this paper. In order to improve the efficiency of K-means clustering algorithm, the best k value is selected by calculating the distance square sum and the average silhouette coefficients. Then, the optimization of residue coordination number strategy is used to calculate the average coordination number. In addition, the pair potentials and relative ASA (PPRA) strategy is also used to optimize the predicted results. Results DataHub dataset and PartyHub dataset were used to train two clustering models respectively. Experiments show that LCSD and RCNOIK have the same coverage with Hub protein datasets, and RCNOIK is slightly higher than LCSD in Precision. The predicted hot regions are closer to the standard hot regions. Conclusions This paper optimizes two clustering methods based on PPRA strategy. Compared our methods for hot regions prediction against the well-known approaches, our improved methods have the higher reliability and are effective for predicting hot regions on Hub protein interaction interfaces.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3