Identifying self-reported health-related problems in home-based rehabilitation of older patients after hip replacement in China: a machine learning study based on Omaha system theory

Author:

Chen Jing,He Fan,Wu Qian,Wang Li,Zhu Xiaoxia,Qi Yan,Wu JiaLing,Shi Yan

Abstract

Abstract Background With the aging of the population, the number of total hip replacement surgeries is increasing globally. Hip replacement has undergone revolutionary advancements in surgical methods and materials. Due to the short length of hospitalization, rehabilitation care is mainly home-based. The needs and concerns about such home-based rehabilitation are constantly changing, requiring continuous attention. Objective To explore effective methods for comprehensively identifying older patients’ self-reported outcomes after home-based rehabilitation for hip replacement, in order to develop appropriate intervention strategies for patient rehabilitation care in the future. Methods This study constructed a corpus of patients’ self-reported rehabilitation care problems after hip replacement, based on the Omaha classification system. This study used the Python development language and implemented artificial intelligence to match the corpus data on the cooperation platform, to identify the main health-related problems reported by the patients, and to perform statistical analyses. Results Most patients had physical health-related problems. More than 80% of these problems were related to neuromusculoskeletal function, interpersonal relationships, pain, health care supervision, physical activity, vision, nutrition, and residential environment. The most common period in which patients’ self-reported problems arose was 6 months post-surgery. The relevant labels that were moderately related to these problems were: Physiology-Speech and Language and Physiology-Mind (r = 0.45), Health-Related Behaviors-Nutrition and Health-Related Behaviors-Compliance with Doctors’ Prescription (r = 0.40). Conclusion Physiological issues remain the main health-related issues for home-based rehabilitation after hip replacement in older patients. Precision care has become an important principle of rehabilitation care. This study used a machine learning method to obtain the largest quantitative network data possible. The artificial intelligence capture was fully automated, which greatly improved efficiency, as compared to manual data entering.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3