Abstract
Abstract
Background
The rapid adoption of electronic health records (EHRs) holds great promise for advancing medicine through practice-based knowledge discovery. However, the validity of EHR-based clinical research is questionable due to poor research reproducibility caused by the heterogeneity and complexity of healthcare institutions and EHR systems, the cross-disciplinary nature of the research team, and the lack of standard processes and best practices for conducting EHR-based clinical research.
Method
We developed a data abstraction framework to standardize the process for multi-site EHR-based clinical studies aiming to enhance research reproducibility. The framework was implemented for a multi-site EHR-based research project, the ESPRESSO project, with the goal to identify individuals with silent brain infarctions (SBI) at Tufts Medical Center (TMC) and Mayo Clinic. The heterogeneity of healthcare institutions, EHR systems, documentation, and process variation in case identification was assessed quantitatively and qualitatively.
Result
We discovered a significant variation in the patient populations, neuroimaging reporting, EHR systems, and abstraction processes across the two sites. The prevalence of SBI for patients over age 50 for TMC and Mayo is 7.4 and 12.5% respectively. There is a variation regarding neuroimaging reporting where TMC are lengthy, standardized and descriptive while Mayo’s reports are short and definitive with more textual variations. Furthermore, differences in the EHR system, technology infrastructure, and data collection process were identified.
Conclusion
The implementation of the framework identified the institutional and process variations and the heterogeneity of EHRs across the sites participating in the case study. The experiment demonstrates the necessity to have a standardized process for data abstraction when conducting EHR-based clinical studies.
Funder
National Institute of Neurological Disorders and Stroke
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference54 articles.
1. Friedman CP, Wong AK, Blumenthal D. Achieving a nationwide learning health system. Sci Transl Med. 2010;2(57):57cm29.
2. Gelijns AC, Gabriel SE. Looking beyond translation--integrating clinical research with medical practice. N Engl J Med. 2012;366(18):1659–61.
3. Milstein A. Code red and blue--safely limiting health care's GDP footprint. N Engl J Med. 2013;368(1):1–3.
4. Richesson RL, Horvath MM, Rusincovitch SA. Clinical research informatics and electronic health record data. Yearb Med Inform. 2014;9:215–23.
5. Kaggal VC, Elayavilli RK, Mehrabi S, Pankratz JJ, Sohn S, Wang Y, Li D, Rastegar MM, Murphy SP, Ross JL, et al. Toward a learning health-care system - knowledge delivery at the point of care empowered by big data and NLP. Biomed Inform Insights. 2016;8(Suppl 1):13–22.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献