Revolutionizing Postoperative Ileus Monitoring: Exploring GRU-D’s Real-Time Capabilities and Cross-Hospital Transferability

Author:

Ruan Xiaoyang,Fu Sunyang,Jia Heling,Mathis Kellie L.,Thiels Cornelius A.,Wilson Patrick M.,Storlie Curtis B.,Liu Hongfang

Abstract

BackgroundPostoperative ileus (POI) after colorectal surgery leads to increased morbidity, costs, and hospital stays. Identifying POI risk for early intervention is important for improving surgical outcomes especially given the increasing trend towards early discharge after surgery. While existing studies have assessed POI risk with regression models, the role of deep learning’s remains unexplored.MethodsWe assessed the performance and transferability (brutal force/instance/parameter transfer) of Gated Recurrent Unit with Decay (GRU-D), a longitudinal deep learning architecture, for real-time risk assessment of POI among 7,349 colorectal surgeries performed across three hospital sites operated by Mayo Clinic with two electronic health records (EHR) systems. The results were compared with atemporal models on a panel of benchmark metrics.ResultsGRU-D exhibits robust transferability across different EHR systems and hospital sites, showing enhanced performance by integrating new measurements, even amid the extreme sparsity of real-world longitudinal data. On average, for labs, vitals, and assisted living status, 72.2%, 26.9%, and 49.3% respectively lack measurements within 24 hours after surgery. Over the follow-up period with 4-hour intervals, 98.7%, 84%, and 95.8% of data points are missing, respectively. A maximum of 5% decrease in AUROC was observed in brutal-force transfer between different EHR systems with non-overlapping surgery date frames. Multi-source instance transfer witnessed the best performance, with a maximum of 2.6% improvement in AUROC over local learning. The significant benefit, however, lies in the reduction of variance (a maximum of 86% decrease). The GRU-D model’s performance mainly depends on the prediction task’s difficulty, especially the case prevalence rate. Whereas the impact of training data and transfer strategy is less crucial, underscoring the challenge of effectively leveraging transfer learning for rare outcomes. While atemporal Logit models show notably superior performance at certain pre-surgical points, their performance fluctuate significantly and generally underperform GRU-D in post-surgical hours.ConclusionGRU-D demonstrated robust transferability across EHR systems and hospital sites with highly sparse real-world EHR data. Further research on built-in explainability for meaningful intervention would be highly valuable for its integration into clinical practice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3