Evaluation of standard and semantically-augmented distance metrics for neurology patients

Author:

Hier Daniel B.ORCID,Kopel JonathanORCID,Brint Steven U.,Wunsch Donald C.ORCID,Olbricht Gayla R.ORCID,Azizi Sima,Allen BlaineORCID

Abstract

Abstract Background Patient distances can be calculated based on signs and symptoms derived from an ontological hierarchy. There is controversy as to whether patient distance metrics that consider the semantic similarity between concepts can outperform standard patient distance metrics that are agnostic to concept similarity. The choice of distance metric can dominate the performance of classification or clustering algorithms. Our objective was to determine if semantically augmented distance metrics would outperform standard metrics on machine learning tasks. Methods We converted the neurological findings from 382 published neurology cases into sets of concepts with corresponding machine-readable codes. We calculated patient distances by four different metrics (cosine distance, a semantically augmented cosine distance, Jaccard distance, and a semantically augmented bipartite distance). Semantic augmentation for two of the metrics depended on concept similarities from a hierarchical neuro-ontology. For machine learning algorithms, we used the patient diagnosis as the ground truth label and patient findings as machine learning features. We assessed classification accuracy for four classifiers and cluster quality for two clustering algorithms for each of the distance metrics. Results Inter-patient distances were smaller when the distance metric was semantically augmented. Classification accuracy and cluster quality were not significantly different by distance metric. Conclusion Although semantic augmentation reduced inter-patient distances, we did not find improved classification accuracy or improved cluster quality with semantically augmented patient distance metrics when applied to a dataset of neurology patients. Further work is needed to assess the utility of semantically augmented patient distances.

Funder

Army Research Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3