Author:
Gonçalves Daniel,Henriques Rui,Santos Lúcio Lara,Costa Rafael S.
Abstract
AbstractPostoperative complications are still hard to predict despite the efforts towards the creation of clinical risk scores. The published scores contribute for the creation of specialized tools, but with limited predictive performance and reusability for implementation in the oncological context. This work aims to predict postoperative complications risk for cancer patients, offering two major contributions. First, to develop and evaluate a machine learning-based risk score, specific for the Portuguese population using a retrospective cohort of 847 cancer patients undergoing surgery between 2016 and 2018, for 4 outcomes of interest: (1) existence of postoperative complications, (2) severity level of complications, (3) number of days in the Intermediate Care Unit (ICU), and (4) postoperative mortality within 1 year. An additional cohort of 137 cancer patients from the same center was used for validation. Second, to improve the interpretability of the predictive models. In order to achieve these objectives, we propose an approach for the learning of risk predictors, offering new perspectives and insights into the clinical decision process. For postoperative complications the Receiver Operating Characteristic Curve (AUC) was 0.69, for complications’ severity AUC was 0.65, for the days in the ICU the mean absolute error was 1.07 days, and for 1-year postoperative mortality the AUC was 0.74, calculated on the development cohort. In this study, predictive models which could help to guide physicians at organizational and clinical decision making were developed. Additionally, a web-based decision support tool is further provided to this end.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献