Explainable Machine Learning Model to Preoperatively Predict Postoperative Complications in Inpatients With Cancer Undergoing Major Operations

Author:

Hernandez Matthew C.1ORCID,Chen Chen2ORCID,Nguyen Andrew3,Choong Kevin4ORCID,Carlin Cameron2,Nelson Rebecca A.5ORCID,Rossi Lorenzo A.2ORCID,Seth Naini6,McNeese Kathy1,Yuh Bertram1,Eftekhari Zahra2,Lai Lily L.1ORCID

Affiliation:

1. Department of Surgery, University of New Mexico, Albuquerque, NM

2. Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA

3. Department of Surgery, City of Hope National Medical Center, Duarte, CA

4. Department of Surgery, Division of Oncology, Primas Health, University of South Carolina Medical School, Greeneville, SC

5. Department of Computational and Quantitative Medicine, Division of Biostatistics, City of Hope National Medical Center, Duarte, CA

6. Department of Clinical Informatics, City of Hope National Medical Center, Duarte, CA

Abstract

PURPOSE Preoperative prediction of postoperative complications (PCs) in inpatients with cancer is challenging. We developed an explainable machine learning (ML) model to predict PCs in a heterogenous population of inpatients with cancer undergoing same-hospitalization major operations. METHODS Consecutive inpatients who underwent same-hospitalization operations from December 2017 to June 2021 at a single institution were retrospectively reviewed. The ML model was developed and tested using electronic health record (EHR) data to predict 30-day PCs for patients with Clavien-Dindo grade 3 or higher (CD 3+) per the CD classification system. Model performance was assessed using area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), and calibration plots. Model explanation was performed using the Shapley additive explanations (SHAP) method at cohort and individual operation levels. RESULTS A total of 988 operations in 827 inpatients were included. The ML model was trained using 788 operations and tested using a holdout set of 200 operations. The CD 3+ complication rates were 28.6% and 27.5% in the training and holdout test sets, respectively. Training and holdout test sets’ model performance in predicting CD 3+ complications yielded an AUROC of 0.77 and 0.73 and an AUPRC of 0.56 and 0.52, respectively. Calibration plots demonstrated good reliability. The SHAP method identified features and the contributions of the features to the risk of PCs. CONCLUSION We trained and tested an explainable ML model to predict the risk of developing PCs in patients with cancer. Using patient-specific EHR data, the ML model accurately discriminated the risk of developing CD 3+ complications and displayed top features at the individual operation and cohort level.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3