Prediction of amyloid PET positivity via machine learning algorithms trained with EDTA-based blood amyloid-β oligomerization data

Author:

Youn Young Chul,Kim Hye Ryoun,Shin Hae-Won,Jeong Hae-Bong,Han Sang-Won,Pyun Jung-Min,Ryoo Nayoung,Park Young Ho,Kim SangYun

Abstract

Abstract Background The tendency of amyloid-β to form oligomers in the blood as measured with Multimer Detection System-Oligomeric Amyloid-β (MDS-OAβ) is a valuable biomarker for Alzheimer’s disease and has been verified with heparin-based plasma. The objective of this study was to evaluate the performance of ethylenediaminetetraacetic acid (EDTA)-based MDS-OAβ and to develop machine learning algorithms to predict amyloid positron emission tomography (PET) positivity. Methods The performance of EDTA-based MDS-OAβ in predicting PET positivity was evaluated in 312 individuals with various machine learning models. The models with various combinations of features (i.e., MDS-OAβ level, age, apolipoprotein E4 alleles, and Mini-Mental Status Examination [MMSE] score) were tested 50 times on each dataset. Results The random forest model best-predicted amyloid PET positivity based on MDS-OAβ combined with other features with an accuracy of 77.14 ± 4.21% and an F1 of 85.44 ± 3.10%. The order of significance of predictive features was MDS-OAβ, MMSE, Age, and APOE. The Support Vector Machine using the MDS-OAβ value only showed an accuracy of 71.09 ± 3.27% and F−1 value of 80.18 ± 2.70%. Conclusions The Random Forest model using EDTA-based MDS-OAβ combined with the MMSE and apolipoprotein E status can be used to prescreen for amyloid PET positivity.

Funder

the Ministry of Education of the Republic of Korea and National Research Foundation of Korea

the Basic Science Research Program through the National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3