Predicting positron emission tomography brain amyloid positivity using interpretable machine learning models with wearable sensor data and lifestyle factors

Author:

Kimura Noriyuki,Aota Tomoki,Aso Yasuhiro,Yabuuchi Kenichi,Sasaki Kotaro,Masuda Teruaki,Eguchi Atsuko,Maeda Yoshitaka,Aoshima Ken,Matsubara Etsuro

Abstract

Abstract Background Developing a screening method for identifying individuals at higher risk of elevated brain amyloid burden is important to reduce costs and burden to patients in clinical trials on Alzheimer’s disease or the clinical setting. We developed machine learning models using objectively measured lifestyle factors to predict elevated brain amyloid burden on positron emission tomography. Methods Our prospective cohort study of non-demented, community-dwelling older adults aged ≥ 65 years was conducted from August 2015 to September 2019 in Usuki, Oita Prefecture, Japan. One hundred and twenty-two individuals with mild cognitive impairment or subjective memory complaints (54 men and 68 women, median age: 75.50 years) wore wearable sensors and completed self-reported questionnaires, cognitive test, and positron emission tomography imaging at baseline. Moreover, 99 individuals in the second year and 61 individuals in the third year were followed up. In total, 282 eligible records with valid wearable sensors, cognitive test results, and amyloid imaging and data on demographic characteristics, living environments, and health behaviors were used in the machine learning models. Amyloid positivity was defined as a standardized uptake value ratio of ≥ 1.4. Models were constructed using kernel support vector machine, Elastic Net, and logistic regression for predicting amyloid positivity. The mean score among 10 times fivefold cross-validation repeats was utilized for evaluation. Results In Elastic Net, the mean area under the receiver operating characteristic curve of the model using objectively measured lifestyle factors alone was 0.70, whereas that of the models using wearable sensors in combination with demographic characteristics and health and life environment questionnaires was 0.79. Moreover, 22 variables were common to all machine learning models. Conclusion Our machine learning models are useful for predicting elevated brain amyloid burden using readily-available and noninvasive variables without the need to visit a hospital. Trial registration This prospective study was conducted in accordance with the Declaration of Helsinki and was approved by the local ethics committee of Oita University Hospital (UMIN000017442). A written informed consent was obtained from all participants. This research was performed based on the Strengthening the Reporting of Observational Studies in Epidemiology reporting guideline.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3