Author:
Pishgar M.,Theis J.,Del Rios M.,Ardati A.,Anahideh H.,Darabi H.
Abstract
Abstract
Background
Intensive Care Unit (ICU) readmissions in patients with heart failure (HF) result in a significant risk of death and financial burden for patients and healthcare systems. Prediction of at-risk patients for readmission allows for targeted interventions that reduce morbidity and mortality.
Methods and results
We presented a process mining/deep learning approach for the prediction of unplanned 30-day readmission of ICU patients with HF. A patient’s health records can be understood as a sequence of observations called event logs; used to discover a process model. Time information was extracted using the DREAM (Decay Replay Mining) algorithm. Demographic information and severity scores upon admission were then combined with the time information and fed to a neural network (NN) model to further enhance the prediction efficiency. Additionally, several machine learning (ML) algorithms were developed to be used as the baseline models for the comparison of the results.
Results
By using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset of 3411 ICU patients with HF, our proposed model yielded an area under the receiver operating characteristics (AUROC) of 0.930, 95% confidence interval of [0.898–0.960], the precision of 0.886, sensitivity of 0.805, accuracy of 0.841, and F-score of 0.800 which were far better than the results of the best baseline model and the existing literature.
Conclusions
The proposed approach was capable of modeling the time-related variables and incorporating the medical history of patients from prior hospital visits for prediction. Thus, our approach significantly improved the outcome prediction compared to that of other ML-based models and health calculators.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Reference46 articles.
1. Mozaffarian DBE, Go A, Arnett D, Blaha M, Cushman M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.
2. Golas SB, Shibahara T, Agboola S, Otaki H, Sato J, Nakae T, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data. BMC Med Inform Decis Mak. 2018;18(1):44.
3. Tan B-Y, Gu J-Y, Wei H-Y, Chen L, Yan S-L, Deng N. Electronic medical record-based model to predict the risk of 90-day readmission for patients with heart failure. BMC Med Inform Decis Mak. 2019;19(1):193.
4. Ponzoni CR, Corrêa TAO, Filho RR, Serpa Neto A, Assunção MSC, Pardini A, et al. Readmission to the intensive care unit: incidence, risk factors, resource use, and outcomes. A retrospective cohort study. Ann Am Thoracic Soc. 2017;14:1312–9.
5. Desautels T, Das R, Calvert J, Trivedi M, Summers C, Wales DJ, et al. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach. BMJ Open. 2017;7(9): e017199.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献