Abstract
Abstract
Background
Several heart failure (HF) risk models exist, however, most of them perform poorly when applied to real-world situations. This study aimed to develop a convenient and efficient risk model to identify patients with high readmission risk within 90 days of HF.
Methods
A multivariate logistic regression model was used to predict the risk of 90-day readmission. Data were extracted from electronic medical records from January 1, 2017 to December 31, 2017 and follow-up records of patients with HF within 3 months after discharge. Model performance was evaluated using a receiver operating characteristic curve. All statistical analysis was done using R version 3.5.0.
Results
A total of 350 patients met the inclusion criterion of being readmitted within in 90 days. All data sets were randomly divided into derivation and validation cohorts at a 7/3 ratio. The baseline data were fairly consistent among the derivation and validation cohorts. The variables most clearly related to readmission were logarithm of serum N-terminal pro b-type natriuretic peptide (NT-proBNP) level, red cell volume distribution width (RDW-CV), and Charlson comorbidity index (CCI). The model had good discriminatory ability (C-statistic = 0.73).
Conclusions
We developed and validated a multivariate logistic regression model to predict the 90-day readmission risk for Chinese patients with HF. The predictors included in the model are derived from electronic medical record (EMR) admission data, making it easier for physicians and pharmacists to identify high-risk patients and tailor more intensive precautionary strategies.
Funder
Natural Science Foundation of Hunan Province
Scientific Research Project of Hunan Provincial Education Department
RenShu foundation of Hunan Provincial People’s Hospital
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献