Differentially private release of medical microdata: an efficient and practical approach for preserving informative attribute values

Author:

Lee Hyukki,Chung Yon DohnORCID

Abstract

Abstract Background Various methods based on k-anonymity have been proposed for publishing medical data while preserving privacy. However, the k-anonymity property assumes that adversaries possess fixed background knowledge. Although differential privacy overcomes this limitation, it is specialized for aggregated results. Thus, it is difficult to obtain high-quality microdata. To address this issue, we propose a differentially private medical microdata release method featuring high utility. Methods We propose a method of anonymizing medical data under differential privacy. To improve data utility, especially by preserving informative attribute values, the proposed method adopts three data perturbation approaches: (1) generalization, (2) suppression, and (3) insertion. The proposed method produces an anonymized dataset that is nearly optimal with regard to utility, while preserving privacy. Results The proposed method achieves lower information loss than existing methods. Based on a real-world case study, we prove that the results of data analyses using the original dataset and those obtained using a dataset anonymized via the proposed method are considerably similar. Conclusions We propose a novel differentially private anonymization method that preserves informative values for the release of medical data. Through experiments, we show that the utility of medical data that has been anonymized via the proposed method is significantly better than that of existing methods.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3