Methods for a similarity measure for clinical attributes based on survival data analysis

Author:

Karmen Christian,Gietzelt Matthias,Knaup-Gregori Petra,Ganzinger MatthiasORCID

Abstract

Abstract Background Case-based reasoning is a proven method that relies on learned cases from the past for decision support of a new case. The accuracy of such a system depends on the applied similarity measure, which quantifies the similarity between two cases. This work proposes a collection of methods for similarity measures especially for comparison of clinical cases based on survival data, as they are available for example from clinical trials. Methods Our approach is intended to be used in scenarios, where it is of interest to use longitudinal data, such as survival data, for a case-based reasoning approach. This might be especially important, where uncertainty about the ideal therapy decision exists. The collection of methods consists of definitions of the local similarity of nominal as well as numeric attributes, a calculation of attribute weights, a feature selection method and finally a global similarity measure. All of them use survival time (consisting of survival status and overall survival) as a reference of similarity. As a baseline, we calculate a survival function for each value of any given clinical attribute. Results We define the similarity between values of the same attribute by putting the estimated survival functions in relation to each other. Finally, we quantify the similarity by determining the area between corresponding curves of survival functions. The proposed global similarity measure is designed especially for cases from randomized clinical trials or other collections of clinical data with survival information. Overall survival can be considered as an eligible and alternative solution for similarity calculations. It is especially useful, when similarity measures that depend on the classic solution-describing attribute “applied therapy” are not applicable. This is often the case for data from clinical trials containing randomized arms. Conclusions In silico evaluation scenarios showed that the mean accuracy of biomarker detection in k = 10 most similar cases is higher (0.909–0.998) than for competing similarity measures, such as Heterogeneous Euclidian-Overlap Metric (0.657–0.831) and Discretized Value Difference Metric (0.535–0.671). The weight calculation method showed a more than six times (6.59–6.95) higher weight for biomarker attributes over non-biomarker attributes. These results suggest that the similarity measure described here is suitable for applications based on survival data.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3