Light-level geolocation as a tool to monitor polar bear (Ursus maritimus) denning ecology: a case study

Author:

Merkel BenjaminORCID,Aars JonORCID,Laidre Kristin L.ORCID,Fox James W.ORCID

Abstract

Abstract Background Monitoring polar bears is logistically challenging and expensive. Traditionally, reproductive history has been assessed using permanent marks from physically captured individuals, which requires assumptions about reproductive history based on their status at the time of capture. This is often supplemented with economically costly satellite telemetry (ST) collars restricted to adult females, which yield data on space use and reproductive history. Methods This study assesses the potential of adapting light-level geolocation (Global location sensing or GLS) tags, developed for birds and fish, to estimate life history metrics for polar bears. Traditionally, GLS uses light intensity and time of day to estimate approximate twice-daily locations. This information, combined with temperature data, can be used to assess approximate locations of maternity denning events, denning timing, general space use, and population connectivity. Results Adult females (n = 54) were equipped, some several times, with a total of 103 GLS in Svalbard and Greenland from 2012 to 2021. Of these, 44 were also equipped with 80 ST collars during this period. This yielded GLS and ST data records for each individual up to 9.4 years (mean (Ø) 4.0 years) and 5.1 years (Ø 1.5 years), respectively. Combined with capture information, the GLS and ST collars were used to score reproductive history (determined presence or absence of maternity denning events) for 72–54% of bear winters during this period, respectively. Using GLS yielded on average 4.3 years of unbroken reproductive history records (up to 8 years for some individuals) including denning phenology and age at first reproduction. Additionally, geographic locations could be estimated during spring and autumn (when twilight was present) with an average daily accuracy of 93 km (4–1042 km) and 58 km (5–550 km) when aggregating by season. Conclusions This study establishes GLS as a powerful, low-cost method for polar bear population monitoring that can provide data on reproductive history, including age at first reproduction, and maternity denning location and phenology in programs with ongoing recapture. GLS can also be used to monitor males and immatures that cannot wear ST collars.

Funder

World Wildlife Fund

Polar Bears International

Miljøministeriet

Miljø- og Fødevareministeriet

Pinngortitaleriffik

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3