Abstract
Abstract
Background
Monitoring polar bears is logistically challenging and expensive. Traditionally, reproductive history has been assessed using permanent marks from physically captured individuals, which requires assumptions about reproductive history based on their status at the time of capture. This is often supplemented with economically costly satellite telemetry (ST) collars restricted to adult females, which yield data on space use and reproductive history.
Methods
This study assesses the potential of adapting light-level geolocation (Global location sensing or GLS) tags, developed for birds and fish, to estimate life history metrics for polar bears. Traditionally, GLS uses light intensity and time of day to estimate approximate twice-daily locations. This information, combined with temperature data, can be used to assess approximate locations of maternity denning events, denning timing, general space use, and population connectivity.
Results
Adult females (n = 54) were equipped, some several times, with a total of 103 GLS in Svalbard and Greenland from 2012 to 2021. Of these, 44 were also equipped with 80 ST collars during this period. This yielded GLS and ST data records for each individual up to 9.4 years (mean (Ø) 4.0 years) and 5.1 years (Ø 1.5 years), respectively. Combined with capture information, the GLS and ST collars were used to score reproductive history (determined presence or absence of maternity denning events) for 72–54% of bear winters during this period, respectively. Using GLS yielded on average 4.3 years of unbroken reproductive history records (up to 8 years for some individuals) including denning phenology and age at first reproduction. Additionally, geographic locations could be estimated during spring and autumn (when twilight was present) with an average daily accuracy of 93 km (4–1042 km) and 58 km (5–550 km) when aggregating by season.
Conclusions
This study establishes GLS as a powerful, low-cost method for polar bear population monitoring that can provide data on reproductive history, including age at first reproduction, and maternity denning location and phenology in programs with ongoing recapture. GLS can also be used to monitor males and immatures that cannot wear ST collars.
Funder
World Wildlife Fund
Polar Bears International
Miljøministeriet
Miljø- og Fødevareministeriet
Pinngortitaleriffik
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献