Receiver tilt: a scourge for aquatic telemetry or useful predictor variable

Author:

Becker Alistair,Lowry Michael B.,Taylor Matthew D.

Abstract

Abstract Background Water current data can be a useful predictor variable to include in acoustic telemetry studies given its link to changes in fish behaviour. While there are a range of sensors which can measure currents, they are often expensive and logistically difficult to deploy and maintain. Contemporary acoustic receivers measure tilt angle which may act as a proxy for water current data if the receiver is moored on a rope and buoy system and allowed to sway in the direction of water flow. We tested the relationship between tilt angle and water current by co-locating two types of commonly deployed receivers with current meters. Results Both receivers (Vemco VR4 and VR2AR) displayed similar ranges in tilt angle. While the VR4 could only measure tilt on a daily basis, the VR2AR measurements were taken hourly; these data were then also aggregated on a daily scale. A positive relationship was found between the tilt angle for both types of receivers and current speed, including for both aggregated daily and hourly data for the VR2AR. Both receivers tended to slightly over-estimate current at lower speeds and underestimate it at high speeds. Conclusions These data show tilt angles recorded by commonly deployed receivers could be incorporated as a proxy for current flow where dedicated current loggers are absent. We would recommend programming receivers to record tilt as frequently as possible to account for short-term variability in environmental conditions.

Funder

NSW Recreational Fishing Trust

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

Reference28 articles.

1. Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, Raby GD, Cooke SJ. Acoustic telemetry and fisheries management. EcolAppl. 2017;27(4):1031–49.

2. Chateau O, Wantiez L. Movement patterns of four coral reef fish species in a fragmented habitat in New Caledonia: implications for the design of marine protected area networks. ICES J Mar Sci. 2008;66(1):50–5.

3. Amtstaetter F, O’Connor J, Pickworth A. Environmental flow releases trigger spawning migrations by Australian grayling Prototroctesmaraena, a threatened, diadromous fish. AquatConserv: Mar FreshwatEcosyst. 2016;26(1):35–43.

4. Holbrook CM, Bergstedt RA, Barber J, Bravener GA, Jones ML, Krueger CC. Evaluating harvest-based control of invasive fish with telemetry: performance of sea lamprey traps in the Great Lakes. EcolAppl. 2016;26(6):1595–609.

5. Brooks JL, Chapman JM, Barkley AN, Kessel ST, Hussey NE, Hinch SG, Patterson DA, Hedges KJ, Cooke SJ, Fisk AT, et al. Biotelemetry informing management: case studies exploring successful integration of biotelemetry data into fisheries and habitat management. Can J Fish AquatSci. 2018;76(7):1238–52.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3