Parameter estimation in biochemical systems models with alternating regression

Author:

Chou I-Chun,Martens Harald,Voit Eberhard O

Abstract

Abstract Background The estimation of parameter values continues to be the bottleneck of the computational analysis of biological systems. It is therefore necessary to develop improved methods that are effective, fast, and scalable. Results We show here that alternating regression (AR), applied to S-system models and combined with methods for decoupling systems of differential equations, provides a fast new tool for identifying parameter values from time series data. The key feature of AR is that it dissects the nonlinear inverse problem of estimating parameter values into iterative steps of linear regression. We show with several artificial examples that the method works well in many cases. In cases of no convergence, it is feasible to dedicate some computational effort to identifying suitable start values and search settings, because the method is fast in comparison to conventional methods that the search for suitable initial values is easily recouped. Because parameter estimation and the identification of system structure are closely related in S-system modeling, the AR method is beneficial for the latter as well. Specifically, we show with an example from the literature that AR is three to five orders of magnitudes faster than direct structure identifications in systems of nonlinear differential equations. Conclusion Alternating regression provides a strategy for the estimation of parameter values and the identification of structure and regulation in S-systems that is genuinely different from all existing methods. Alternating regression is usually very fast, but its convergence patterns are complex and will require further investigation. In cases where convergence is an issue, the enormous speed of the method renders it feasible to select several initial guesses and search settings as an effective countermeasure.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modelling and Simulation

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inference of genetic networks using random forests:Performance improvement using a new variable importance measure;Chem-Bio Informatics Journal;2022-12-29

2. SystemC Implementation of Stochastic Petri Nets for Simulation and Parameterization of Biological Networks;ACM Transactions on Embedded Computing Systems;2021-06

3. Differential equations in data analysis;WIREs Computational Statistics;2020-11-30

4. Model Identifiability;Identifiability and Regression Analysis of Biological Systems Models;2020

5. Inference of genetic networks using random forests: Assigning different weights for gene expression data;Journal of Bioinformatics and Computational Biology;2019-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3